Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Nat Commun ; 15(1): 4462, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796512

RESUMO

Virulence and metabolism are often interlinked to control the expression of essential colonisation factors in response to host-associated signals. Here, we identified an uncharacterised transporter of the dietary monosaccharide ʟ-arabinose that is widely encoded by the zoonotic pathogen enterohaemorrhagic Escherichia coli (EHEC), required for full competitive fitness in the mouse gut and highly expressed during human infection. Discovery of this transporter suggested that EHEC strains have an enhanced ability to scavenge ʟ-arabinose and therefore prompted us to investigate the impact of this nutrient on pathogenesis. Accordingly, we discovered that ʟ-arabinose enhances expression of the EHEC type 3 secretion system, increasing its ability to colonise host cells, and that the underlying mechanism is dependent on products of its catabolism rather than the sensing of ʟ-arabinose as a signal. Furthermore, using the murine pathogen Citrobacter rodentium, we show that ʟ-arabinose metabolism provides a fitness benefit during infection via virulence factor regulation, as opposed to supporting pathogen growth. Finally, we show that this mechanism is not restricted to ʟ-arabinose and extends to other pentose sugars with a similar metabolic fate. This work highlights the importance integrating central metabolism with virulence regulation in order to maximise competitive fitness of enteric pathogens within the host-niche.


Assuntos
Arabinose , Citrobacter rodentium , Escherichia coli Êntero-Hemorrágica , Arabinose/metabolismo , Animais , Camundongos , Citrobacter rodentium/patogenicidade , Citrobacter rodentium/metabolismo , Citrobacter rodentium/genética , Humanos , Virulência , Escherichia coli Êntero-Hemorrágica/patogenicidade , Escherichia coli Êntero-Hemorrágica/metabolismo , Escherichia coli Êntero-Hemorrágica/genética , Regulação Bacteriana da Expressão Gênica , Fatores de Virulência/metabolismo , Fatores de Virulência/genética , Infecções por Enterobacteriaceae/microbiologia , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Sistemas de Secreção Tipo III/metabolismo , Sistemas de Secreção Tipo III/genética , Infecções por Escherichia coli/microbiologia , Feminino
2.
bioRxiv ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37961452

RESUMO

Mycobacterial glycolipids are important cell envelope structures that drive host-pathogen interactions. Arguably, the most important amongst these are lipoarabinomannan (LAM) and its precursor, lipomannan (LM), which are both trafficked out of the bacterium to the host via unknown mechanisms. An important class of exported LM/LAM is the capsular derivative of these molecules which is devoid of its lipid anchor. Here, we describe the identification of a glycoside hydrolase family 76 enzyme that we term LamH which specifically cleaves α-1,6-mannoside linkages within LM and LAM, driving its export to the capsule releasing its phosphatidyl-myo-inositol mannoside lipid anchor. Unexpectedly, we found that the catalytic activity of this enzyme is important for efficient exit from stationary phase cultures where arabinomannan acts as a signal for growth phase transition. Finally, we demonstrate that LamH is important for Mycobacterium tuberculosis survival in macrophages. These data provide a new framework for understanding the biological role of LAM in mycobacteria.

3.
Nat Commun ; 14(1): 2233, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076525

RESUMO

Bacterial cell growth and division require the coordinated action of enzymes that synthesize and degrade cell wall polymers. Here, we identify enzymes that cleave the D-arabinan core of arabinogalactan, an unusual component of the cell wall of Mycobacterium tuberculosis and other mycobacteria. We screened 14 human gut-derived Bacteroidetes for arabinogalactan-degrading activities and identified four families of glycoside hydrolases with activity against the D-arabinan or D-galactan components of arabinogalactan. Using one of these isolates with exo-D-galactofuranosidase activity, we generated enriched D-arabinan and used it to identify a strain of Dysgonomonas gadei as a D-arabinan degrader. This enabled the discovery of endo- and exo-acting enzymes that cleave D-arabinan, including members of the DUF2961 family (GH172) and a family of glycoside hydrolases (DUF4185/GH183) that display endo-D-arabinofuranase activity and are conserved in mycobacteria and other microbes. Mycobacterial genomes encode two conserved endo-D-arabinanases with different preferences for the D-arabinan-containing cell wall components arabinogalactan and lipoarabinomannan, suggesting they are important for cell wall modification and/or degradation. The discovery of these enzymes will support future studies into the structure and function of the mycobacterial cell wall.


Assuntos
Mycobacterium tuberculosis , Polissacarídeos , Humanos , Polissacarídeos/metabolismo , Mycobacterium tuberculosis/metabolismo , Glicosídeo Hidrolases/metabolismo , Parede Celular/metabolismo
4.
Curr Opin Microbiol ; 67: 102143, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35338908

RESUMO

Microbiomes and their enzymes process many of the nutrients accessible in the gastrointestinal tract of bilaterians and play an essential role in host health and nutrition. In this review, we describe recent insights into nutrient processing in microbiomes across three exemplary yet contrasting gastrointestinal ecosystems (humans, ruminants and insects), with focus on bacterial mechanisms for the utilization of common and atypical dietary glycans as well as host-derived mucus glycans. In parallel, we discuss findings from multi-omic studies that have provided new perspectives on understanding glycan-dependent interactions and the complex food-webs of microbial populations in their natural habitat. Using key examples, we emphasize how increasing understanding of glycan processing by gut microbiomes can provide critical insights to assist 'microbiome reprogramming', a growing field that seeks to leverage diet to improve animal growth and host health.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Bactérias/genética , Trato Gastrointestinal/microbiologia , Polissacarídeos
7.
Nat Microbiol ; 4(9): 1571-1581, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31160824

RESUMO

Glycans are the major carbon sources available to the human colonic microbiota. Numerous N-glycosylated proteins are found in the human gut, from both dietary and host sources, including immunoglobulins such as IgA that are secreted into the intestine at high levels. Here, we show that many mutualistic gut Bacteroides spp. have the capacity to utilize complex N-glycans (CNGs) as nutrients, including those from immunoglobulins. Detailed mechanistic studies using transcriptomic, biochemical, structural and genetic techniques reveal the pathway employed by Bacteroides thetaiotaomicron (Bt) for CNG degradation. The breakdown process involves an extensive enzymatic apparatus encoded by multiple non-adjacent loci and comprises 19 different carbohydrate-active enzymes from different families, including a CNG-specific endo-glycosidase activity. Furthermore, CNG degradation involves the activity of carbohydrate-active enzymes that have previously been implicated in the degradation of other classes of glycan. This complex and diverse apparatus provides Bt with the capacity to access the myriad different structural variants of CNGs likely to be found in the intestinal niche.


Assuntos
Bacteroides/enzimologia , Bacteroides/genética , Regulação Bacteriana da Expressão Gênica , Intestinos/microbiologia , Polissacarídeos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteroides/crescimento & desenvolvimento , Cristalografia por Raios X , Perfilação da Expressão Gênica , Loci Gênicos/genética , Glicoproteínas/química , Glicoproteínas/metabolismo , Humanos , Polissacarídeos/química , Simbiose
8.
Nat Microbiol ; 3(11): 1314-1326, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30349080

RESUMO

Glycans are major nutrients for the human gut microbiota (HGM). Arabinogalactan proteins (AGPs) comprise a heterogenous group of plant glycans in which a ß1,3-galactan backbone and ß1,6-galactan side chains are conserved. Diversity is provided by the variable nature of the sugars that decorate the galactans. The mechanisms by which nutritionally relevant AGPs are degraded in the HGM are poorly understood. Here we explore how the HGM organism Bacteroides thetaiotaomicron metabolizes AGPs. We propose a sequential degradative model in which exo-acting glycoside hydrolase (GH) family 43 ß1,3-galactanases release the side chains. These oligosaccharide side chains are depolymerized by the synergistic action of exo-acting enzymes in which catalytic interactions are dependent on whether degradation is initiated by a lyase or GH. We identified two GHs that establish two previously undiscovered GH families. The crystal structures of the exo-ß1,3-galactanases identified a key specificity determinant and departure from the canonical catalytic apparatus of GH43 enzymes. Growth studies of Bacteroidetes spp. on complex AGP revealed 3 keystone organisms that facilitated utilization of the glycan by 17 recipient bacteria, which included B. thetaiotaomicron. A surface endo-ß1,3-galactanase, when engineered into B. thetaiotaomicron, enabled the bacterium to utilize complex AGPs and act as a keystone organism.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteroides thetaiotaomicron/enzimologia , Glicosídeo Hidrolases/metabolismo , Mucoproteínas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bacteroides thetaiotaomicron/classificação , Bacteroides thetaiotaomicron/crescimento & desenvolvimento , Bacteroides thetaiotaomicron/metabolismo , Cristalografia por Raios X , Microbioma Gastrointestinal/fisiologia , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Humanos , Oligossacarídeos/metabolismo , Proteínas de Plantas/metabolismo , Especificidade por Substrato
9.
Nat Microbiol ; 3(2): 210-219, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29255254

RESUMO

The major nutrients available to human colonic Bacteroides species are glycans, exemplified by pectins, a network of covalently linked plant cell wall polysaccharides containing galacturonic acid (GalA). Metabolism of complex carbohydrates by the Bacteroides genus is orchestrated by polysaccharide utilization loci (PULs). In Bacteroides thetaiotaomicron, a human colonic bacterium, the PULs activated by different pectin domains have been identified; however, the mechanism by which these loci contribute to the degradation of these GalA-containing polysaccharides is poorly understood. Here we show that each PUL orchestrates the metabolism of specific pectin molecules, recruiting enzymes from two previously unknown glycoside hydrolase families. The apparatus that depolymerizes the backbone of rhamnogalacturonan-I is particularly complex. This system contains several glycoside hydrolases that trim the remnants of other pectin domains attached to rhamnogalacturonan-I, and nine enzymes that contribute to the degradation of the backbone that makes up a rhamnose-GalA repeating unit. The catalytic properties of the pectin-degrading enzymes are optimized to protect the glycan cues that activate the specific PULs ensuring a continuous supply of inducing molecules throughout growth. The contribution of Bacteroides spp. to metabolism of the pectic network is illustrated by cross-feeding between organisms.


Assuntos
Bacteroides/metabolismo , Colo/microbiologia , Dieta , Pectinas/metabolismo , Polissacarídeos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteroides/enzimologia , Bacteroides/genética , Bacteroides/crescimento & desenvolvimento , Genes Bacterianos/genética , Glicosídeo Hidrolases , Ácidos Hexurônicos , Humanos , Mutagênese Sítio-Dirigida , Células Vegetais/metabolismo
10.
Cell Host Microbe ; 22(6): 733-745.e5, 2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29241040

RESUMO

Interactions between the host and its microbiota are of mutual benefit and promote health. Complex molecular pathways underlie this dialog, but the identity of microbe-derived molecules that mediate the mutualistic state remains elusive. Helicobacter hepaticus is a member of the mouse intestinal microbiota that is tolerated by the host. In the absence of an intact IL-10 signaling, H. hepaticus induces an IL-23-driven inflammatory response in the intestine. Here we investigate the interactions between H. hepaticus and host immune cells that may promote mutualism, and the microbe-derived molecule(s) involved. Our results show that H. hepaticus triggers early IL-10 induction in intestinal macrophages and produces a large soluble polysaccharide that activates a specific MSK/CREB-dependent anti-inflammatory and repair gene signature via the receptor TLR2. These data identify a host-bacterial interaction that promotes mutualistic mechanisms at the intestinal interface. Further understanding of this pathway may provide novel prevention and treatment strategies for inflammatory bowel disease.


Assuntos
Helicobacter hepaticus/imunologia , Helicobacter hepaticus/metabolismo , Imunossupressores/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Polissacarídeos Bacterianos/metabolismo , Simbiose , Animais , Interleucina-10/metabolismo , Interleucina-23/metabolismo , Camundongos , Receptor 2 Toll-Like/metabolismo
11.
Proc Natl Acad Sci U S A ; 114(27): 7037-7042, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28630303

RESUMO

The human microbiota, which plays an important role in health and disease, uses complex carbohydrates as a major source of nutrients. Utilization hierarchy indicates that the host glycosaminoglycans heparin (Hep) and heparan sulfate (HS) are high-priority carbohydrates for Bacteroides thetaiotaomicron, a prominent member of the human microbiota. The sulfation patterns of these glycosaminoglycans are highly variable, which presents a significant enzymatic challenge to the polysaccharide lyases and sulfatases that mediate degradation. It is possible that the bacterium recruits lyases with highly plastic specificities and expresses a repertoire of enzymes that target substructures of the glycosaminoglycans with variable sulfation or that the glycans are desulfated before cleavage by the lyases. To distinguish between these mechanisms, the components of the B. thetaiotaomicron Hep/HS degrading apparatus were analyzed. The data showed that the bacterium expressed a single-surface endo-acting lyase that cleaved HS, reflecting its higher molecular weight compared with Hep. Both Hep and HS oligosaccharides imported into the periplasm were degraded by a repertoire of lyases, with each enzyme displaying specificity for substructures within these glycosaminoglycans that display a different degree of sulfation. Furthermore, the crystal structures of a key surface glycan binding protein, which is able to bind both Hep and HS, and periplasmic sulfatases reveal the major specificity determinants for these proteins. The locus described here is highly conserved within the human gut Bacteroides, indicating that the model developed is of generic relevance to this important microbial community.


Assuntos
Bacteroides/enzimologia , Microbioma Gastrointestinal , Glicosaminoglicanos/química , Bacteroides/genética , Calorimetria , Carboidratos/química , Catálise , Cristalografia por Raios X , Citoplasma/enzimologia , Carboidratos da Dieta , Heparina/química , Heparitina Sulfato/química , Humanos , Microscopia de Fluorescência , Mutação , Oligossacarídeos/química , Polissacarídeo-Liases/química , Polissacarídeos/química , Sulfatases/química , Enxofre/química
12.
J Biol Chem ; 292(25): 10639-10650, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28461332

RESUMO

Glycans are major nutrients available to the human gut microbiota. The Bacteroides are generalist glycan degraders, and this function is mediated largely by polysaccharide utilization loci (PULs). The genomes of several Bacteroides species contain a PUL, PUL1,6-ß-glucan, that was predicted to target mixed linked plant 1,3;1,4-ß-glucans. To test this hypothesis we characterized the proteins encoded by this locus in Bacteroides thetaiotaomicron, a member of the human gut microbiota. We show here that PUL1,6-ß-glucan does not orchestrate the degradation of a plant polysaccharide but targets a fungal cell wall glycan, 1,6-ß-glucan, which is a growth substrate for the bacterium. The locus is up-regulated by 1,6-ß-glucan and encodes two enzymes, a surface endo-1,6-ß-glucanase, BT3312, and a periplasmic ß-glucosidase that targets primarily 1,6-ß-glucans. The non-catalytic proteins encoded by PUL1,6-ß-glucan target 1,6-ß-glucans and comprise a surface glycan-binding protein and a SusD homologue that delivers glycans to the outer membrane transporter. We identified the central role of the endo-1,6-ß-glucanase in 1,6-ß-glucan depolymerization by deleting bt3312, which prevented the growth of B. thetaiotaomicron on 1,6-ß-glucan. The crystal structure of BT3312 in complex with ß-glucosyl-1,6-deoxynojirimycin revealed a TIM barrel catalytic domain that contains a deep substrate-binding cleft tailored to accommodate the hook-like structure adopted by 1,6-ß-glucan. Specificity is driven by the complementarity of the enzyme active site cleft and the conformation of the substrate. We also noted that PUL1,6-ß-glucan is syntenic to many PULs from other Bacteroidetes, suggesting that utilization of yeast and fungal cell wall 1,6-ß-glucans is a widespread adaptation within the human microbiota.


Assuntos
Proteínas de Bactérias/química , Bacteroidetes/enzimologia , Polissacarídeos Fúngicos/química , Glicosídeo Hidrolases/química , beta-Glucanas/química , Proteínas de Bactérias/genética , Bacteroidetes/genética , Configuração de Carboidratos , Cristalografia por Raios X , Loci Gênicos , Glicosídeo Hidrolases/genética , Humanos , Especificidade por Substrato
14.
Gut Microbes ; 6(5): 334-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26440374

RESUMO

The complex carbohydrates accessible to the distal gut microbiota (DGM) are key drivers in determining the structure of this ecosystem. Typically, plant cell wall polysaccharides and recalcitrant starch (i.e. dietary fiber), in addition to host glycans are considered the primary nutrients for the DGM; however, we recently demonstrated that α-mannans, highly branched polysaccharides that decorate the surface of yeast, are also nutrients for several members of Bacteroides spp. This relationship suggests that the advent of yeast in contemporary food technologies and the colonization of the intestine by endogenous fungi have roles in microbiome structure and function. Here we discuss the process of yeast mannan metabolism, and the intersection between various sources of intestinal fungi and their roles in recognition by the host innate immune system.


Assuntos
Bacteroides/metabolismo , Dieta , Microbioma Gastrointestinal , Imunidade , Mananas/metabolismo , Leveduras/química , Humanos , Hidrólise , Interações Microbianas
15.
J Biol Chem ; 290(41): 25023-33, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26286752

RESUMO

The depolymerization of complex glycans is an important biological process that is of considerable interest to environmentally relevant industries. ß-Mannose is a major component of plant structural polysaccharides and eukaryotic N-glycans. These linkages are primarily cleaved by glycoside hydrolases, although recently, a family of glycoside phosphorylases, GH130, have also been shown to target ß-1,2- and ß-1,4-mannosidic linkages. In these phosphorylases, bond cleavage was mediated by a single displacement reaction in which phosphate functions as the catalytic nucleophile. A cohort of GH130 enzymes, however, lack the conserved basic residues that bind the phosphate nucleophile, and it was proposed that these enzymes function as glycoside hydrolases. Here we show that two Bacteroides enzymes, BT3780 and BACOVA_03624, which lack the phosphate binding residues, are indeed ß-mannosidases that hydrolyze ß-1,2-mannosidic linkages through an inverting mechanism. Because the genes encoding these enzymes are located in genetic loci that orchestrate the depolymerization of yeast α-mannans, it is likely that the two enzymes target the ß-1,2-mannose residues that cap the glycan produced by Candida albicans. The crystal structure of BT3780 in complex with mannose bound in the -1 and +1 subsites showed that a pair of glutamates, Glu(227) and Glu(268), hydrogen bond to O1 of α-mannose, and either of these residues may function as the catalytic base. The candidate catalytic acid and the other residues that interact with the active site mannose are conserved in both GH130 mannoside phosphorylases and ß-1,2-mannosidases. Functional phylogeny identified a conserved lysine, Lys(199) in BT3780, as a key specificity determinant for ß-1,2-mannosidic linkages.


Assuntos
Candida , Glicosídeo Hidrolases/metabolismo , Mananas/química , Mananas/metabolismo , Manose/química , Fosforilases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Bacteroides/enzimologia , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Glicosídeo Hidrolases/química , Modelos Moleculares , Dados de Sequência Molecular , Fosforilases/química , Ligação Proteica
16.
Nat Commun ; 6: 7481, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26112186

RESUMO

The structure of the human gut microbiota is controlled primarily through the degradation of complex dietary carbohydrates, but the extent to which carbohydrate breakdown products are shared between members of the microbiota is unclear. We show here, using xylan as a model, that sharing the breakdown products of complex carbohydrates by key members of the microbiota, such as Bacteroides ovatus, is dependent on the complexity of the target glycan. Characterization of the extensive xylan degrading apparatus expressed by B. ovatus reveals that the breakdown of the polysaccharide by the human gut microbiota is significantly more complex than previous models suggested, which were based on the deconstruction of xylans containing limited monosaccharide side chains. Our report presents a highly complex and dynamic xylan degrading apparatus that is fine-tuned to recognize the different forms of the polysaccharide presented to the human gut microbiota.


Assuntos
Bacteroides/metabolismo , Xilanos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bifidobacterium/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Genômica , Humanos , Transporte Proteico , Zea mays
18.
Nature ; 517(7533): 165-169, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25567280

RESUMO

Yeasts, which have been a component of the human diet for at least 7,000 years, possess an elaborate cell wall α-mannan. The influence of yeast mannan on the ecology of the human microbiota is unknown. Here we show that yeast α-mannan is a viable food source for the Gram-negative bacterium Bacteroides thetaiotaomicron, a dominant member of the microbiota. Detailed biochemical analysis and targeted gene disruption studies support a model whereby limited cleavage of α-mannan on the surface generates large oligosaccharides that are subsequently depolymerized to mannose by the action of periplasmic enzymes. Co-culturing studies showed that metabolism of yeast mannan by B. thetaiotaomicron presents a 'selfish' model for the catabolism of this difficult to breakdown polysaccharide. Genomic comparison with B. thetaiotaomicron in conjunction with cell culture studies show that a cohort of highly successful members of the microbiota has evolved to consume sterically-restricted yeast glycans, an adaptation that may reflect the incorporation of eukaryotic microorganisms into the human diet.


Assuntos
Bacteroidetes/metabolismo , Trato Gastrointestinal/microbiologia , Mananas/metabolismo , Modelos Biológicos , Leveduras/química , Animais , Bacteroidetes/citologia , Bacteroidetes/enzimologia , Bacteroidetes/genética , Evolução Biológica , Configuração de Carboidratos , Dieta , Enzimas/genética , Enzimas/metabolismo , Feminino , Loci Gênicos/genética , Vida Livre de Germes , Glicoproteínas/química , Glicoproteínas/metabolismo , Humanos , Masculino , Mananas/química , Manose/metabolismo , Camundongos , Modelos Moleculares , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Periplasma/enzimologia
19.
Mol Microbiol ; 93(5): 1010-25, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25041429

RESUMO

Cells respond to nutrient availability by expressing nutrient catabolic genes. We report that the regulator controlling utilization of chondroitin sulphate (CS) in the mammalian gut symbiont Bacteroides thetaiotaomicron is activated by an intermediate in CS breakdown rather than CS itself. We determine that the rate-determining enzyme in CS breakdown is responsible for degrading this intermediate and establish that the levels of the enzyme increase 100-fold, whereas those of the regulator remain constant upon exposure to CS. Because enzyme and regulator compete for the intermediate, B. thetaiotaomicron tunes transcription of CS utilization genes to CS catabolic rate. This tuning results in a transient increase in CS utilization transcripts upon exposure to excess CS. Constitutive expression of the rate-determining enzyme hindered activation of CS utilization genes and growth on CS. An analogous mechanism regulates heparin utilization genes, suggesting that the identified strategy aids B. thetaiotaomicron in the competitive gut environment.


Assuntos
Proteínas de Bactérias/genética , Bacteroides/genética , Bacteroides/metabolismo , Sulfatos de Condroitina/metabolismo , Transcrição Gênica , Proteínas de Bactérias/metabolismo , Bacteroides/enzimologia , Bacteroides/crescimento & desenvolvimento , Trato Gastrointestinal/microbiologia , Humanos
20.
Angew Chem Int Ed Engl ; 53(4): 1087-91, 2014 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-24339341

RESUMO

Mannosidases catalyze the hydrolysis of a diverse range of polysaccharides and glycoconjugates, and the various sequence-based mannosidase families have evolved ingenious strategies to overcome the stereoelectronic challenges of mannoside chemistry. Using a combination of computational chemistry, inhibitor design and synthesis, and X-ray crystallography of inhibitor/enzyme complexes, it is demonstrated that mannoimidazole-type inhibitors are energetically poised to report faithfully on mannosidase transition-state conformation, and provide direct evidence for the conformational itinerary used by diverse mannosidases, including ß-mannanases from families GH26 and GH113. Isofagomine-type inhibitors are poor mimics of transition-state conformation, owing to the high energy barriers that must be crossed to attain mechanistically relevant conformations, however, these sugar-shaped heterocycles allow the acquisition of ternary complexes that span the active site, thus providing valuable insight into active-site residues involved in substrate recognition.


Assuntos
Inibidores Enzimáticos/farmacologia , Imidazóis/farmacologia , Imino Piranoses/farmacologia , Manosidases/antagonistas & inibidores , Termodinâmica , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Imidazóis/síntese química , Imidazóis/química , Imino Piranoses/síntese química , Imino Piranoses/química , Manosidases/química , Manosidases/metabolismo , Modelos Moleculares , Conformação Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA