Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Rep ; 42(7): 112711, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37436900

RESUMO

Broadly neutralizing antibodies (bNAbs) against HIV can reduce viral transmission in humans, but an effective therapeutic will require unusually high breadth and potency of neutralization. We employ the OSPREY computational protein design software to engineer variants of two apex-directed bNAbs, PGT145 and PG9RSH, resulting in increases in potency of over 100-fold against some viruses. The top designed variants improve neutralization breadth from 39% to 54% at clinically relevant concentrations (IC80 < 1 µg/mL) and improve median potency (IC80) by up to 4-fold over a cross-clade panel of 208 strains. To investigate the mechanisms of improvement, we determine cryoelectron microscopy structures of each variant in complex with the HIV envelope trimer. Surprisingly, we find the largest increases in breadth to be a result of optimizing side-chain interactions with highly variable epitope residues. These results provide insight into mechanisms of neutralization breadth and inform strategies for antibody design and improvement.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Anticorpos Anti-HIV , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes , Microscopia Crioeletrônica , Testes de Neutralização
2.
Comput Biol Med ; 155: 106618, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36774893

RESUMO

The ongoing COVID-19 pandemic is leading to the discovery of hundreds of novel SARS-CoV-2 variants daily. While most variants do not impact the course of the pandemic, some variants pose an increased risk when the acquired mutations allow better evasion of antibody neutralisation or increased transmissibility. Early detection of such high-risk variants (HRVs) is paramount for the proper management of the pandemic. However, experimental assays to determine immune evasion and transmissibility characteristics of new variants are resource-intensive and time-consuming, potentially leading to delays in appropriate responses by decision makers. Presented herein is a novel in silico approach combining spike (S) protein structure modelling and large protein transformer language models on S protein sequences to accurately rank SARS-CoV-2 variants for immune escape and fitness potential. Both metrics were experimentally validated using in vitro pseudovirus-based neutralisation test and binding assays and were subsequently combined to explore the changing landscape of the pandemic and to create an automated Early Warning System (EWS) capable of evaluating new variants in minutes and risk-monitoring variant lineages in near real-time. The system accurately pinpoints the putatively dangerous variants by selecting on average less than 0.3% of the novel variants each week. The EWS flagged all 16 variants designated by the World Health Organization (WHO) as variants of interest (VOIs) if applicable or variants of concern (VOCs) otherwise with an average lead time of more than one and a half months ahead of their designation as such.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , Benchmarking , Mutação
3.
PLoS Comput Biol ; 16(6): e1007447, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32511232

RESUMO

The K* algorithm provably approximates partition functions for a set of states (e.g., protein, ligand, and protein-ligand complex) to a user-specified accuracy ε. Often, reaching an ε-approximation for a particular set of partition functions takes a prohibitive amount of time and space. To alleviate some of this cost, we introduce two new algorithms into the osprey suite for protein design: fries, a Fast Removal of Inadequately Energied Sequences, and EWAK*, an Energy Window Approximation to K*. fries pre-processes the sequence space to limit a design to only the most stable, energetically favorable sequence possibilities. EWAK* then takes this pruned sequence space as input and, using a user-specified energy window, calculates K* scores using the lowest energy conformations. We expect fries/EWAK* to be most useful in cases where there are many unstable sequences in the design sequence space and when users are satisfied with enumerating the low-energy ensemble of conformations. In combination, these algorithms provably retain calculational accuracy while limiting the input sequence space and the conformations included in each partition function calculation to only the most energetically favorable, effectively reducing runtime while still enriching for desirable sequences. This combined approach led to significant speed-ups compared to the previous state-of-the-art multi-sequence algorithm, BBK*, while maintaining its efficiency and accuracy, which we show across 40 different protein systems and a total of 2,826 protein design problems. Additionally, as a proof of concept, we used these new algorithms to redesign the protein-protein interface (PPI) of the c-Raf-RBD:KRas complex. The Ras-binding domain of the protein kinase c-Raf (c-Raf-RBD) is the tightest known binder of KRas, a protein implicated in difficult-to-treat cancers. fries/EWAK* accurately retrospectively predicted the effect of 41 different sets of mutations in the PPI of the c-Raf-RBD:KRas complex. Notably, these mutations include mutations whose effect had previously been incorrectly predicted using other computational methods. Next, we used fries/EWAK* for prospective design and discovered a novel point mutation that improves binding of c-Raf-RBD to KRas in its active, GTP-bound state (KRasGTP). We combined this new mutation with two previously reported mutations (which were highly-ranked by osprey) to create a new variant of c-Raf-RBD, c-Raf-RBD(RKY). fries/EWAK* in osprey computationally predicted that this new variant binds even more tightly than the previous best-binding variant, c-Raf-RBD(RK). We measured the binding affinity of c-Raf-RBD(RKY) using a bio-layer interferometry (BLI) assay, and found that this new variant exhibits single-digit nanomolar affinity for KRasGTP, confirming the computational predictions made with fries/EWAK*. This new variant binds roughly five times more tightly than the previous best known binder and roughly 36 times more tightly than the design starting point (wild-type c-Raf-RBD). This study steps through the advancement and development of computational protein design by presenting theory, new algorithms, accurate retrospective designs, new prospective designs, and biochemical validation.


Assuntos
Biologia Computacional , Engenharia de Proteínas/métodos , Proteínas Proto-Oncogênicas c-raf/química , Proteínas Proto-Oncogênicas p21(ras)/química , Algoritmos , Computadores , Humanos , Interferometria , Lectinas/química , Ligantes , Modelos Estatísticos , Linguagens de Programação , Ligação Proteica , Domínios Proteicos , Software
4.
J Comput Biol ; 27(4): 550-564, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31855059

RESUMO

Protein design algorithms that model continuous sidechain flexibility and conformational ensembles better approximate the in vitro and in vivo behavior of proteins. The previous state of the art, iMinDEE-A*-K*, computes provable ɛ-approximations to partition functions of protein states (e.g., bound vs. unbound) by computing provable, admissible pairwise-minimized energy lower bounds on protein conformations, and using the A* enumeration algorithm to return a gap-free list of lowest-energy conformations. iMinDEE-A*-K* runs in time sublinear in the number of conformations, but can be trapped in loosely-bounded, low-energy conformational wells containing many conformations with highly similar energies. That is, iMinDEE-A*-K* is unable to exploit the correlation between protein conformation and energy: similar conformations often have similar energy. We introduce two new concepts that exploit this correlation: Minimization-Aware Enumeration and Recursive K*. We combine these two insights into a novel algorithm, Minimization-Aware Recursive K* (MARK*), which tightens bounds not on single conformations, but instead on distinct regions of the conformation space. We compare the performance of iMinDEE-A*-K* versus MARK* by running the Branch and Bound over K* (BBK*) algorithm, which provably returns sequences in order of decreasing K* score, using either iMinDEE-A*-K* or MARK* to approximate partition functions. We show on 200 design problems that MARK* not only enumerates and minimizes vastly fewer conformations than the previous state of the art, but also runs up to 2 orders of magnitude faster. Finally, we show that MARK* not only efficiently approximates the partition function, but also provably approximates the energy landscape. To our knowledge, MARK* is the first algorithm to do so. We use MARK* to analyze the change in energy landscape of the bound and unbound states of an HIV-1 capsid protein C-terminal domain in complex with a camelid VHH, and measure the change in conformational entropy induced by binding. Thus, MARK* both accelerates existing designs and offers new capabilities not possible with previous algorithms.


Assuntos
Biologia Computacional , Conformação Proteica , Proteínas/genética , Software , Algoritmos , Sequência de Aminoácidos/genética , Entropia , Modelos Moleculares , Domínios Proteicos/genética , Proteínas/ultraestrutura , Termodinâmica
5.
J Phys Chem B ; 123(49): 10441-10455, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31697075

RESUMO

The CFTR-associated ligand PDZ domain (CALP) binds to the cystic fibrosis transmembrane conductance regulator (CFTR) and mediates lysosomal degradation of mature CFTR. Inhibition of this interaction has been explored as a therapeutic avenue for cystic fibrosis. Previously, we reported the ensemble-based computational design of a novel peptide inhibitor of CALP, which resulted in the most binding-efficient inhibitor to date. This inhibitor, kCAL01, was designed using osprey and evinced significant biological activity in in vitro cell-based assays. Here, we report a crystal structure of kCAL01 bound to CALP and compare structural features against iCAL36, a previously developed inhibitor of CALP. We compute side-chain energy landscapes for each structure to not only enable approximation of binding thermodynamics but also reveal ensemble features that contribute to the comparatively efficient binding of kCAL01. Finally, we compare the previously reported design ensemble for kCAL01 vs the new crystal structure and show that, despite small differences between the design model and crystal structure, significant biophysical features that enhance inhibitor binding are captured in the design ensemble. This suggests not only that ensemble-based design captured thermodynamically significant features observed in vitro, but also that a design eschewing ensembles would miss the kCAL01 sequence entirely.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Peptídeos/farmacologia , Termodinâmica , Sítios de Ligação/efeitos dos fármacos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Ligantes , Modelos Moleculares , Peptídeos/síntese química , Peptídeos/química
6.
J Comput Chem ; 39(30): 2494-2507, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30368845

RESUMO

We present osprey 3.0, a new and greatly improved release of the osprey protein design software. Osprey 3.0 features a convenient new Python interface, which greatly improves its ease of use. It is over two orders of magnitude faster than previous versions of osprey when running the same algorithms on the same hardware. Moreover, osprey 3.0 includes several new algorithms, which introduce substantial speedups as well as improved biophysical modeling. It also includes GPU support, which provides an additional speedup of over an order of magnitude. Like previous versions of osprey, osprey 3.0 offers a unique package of advantages over other design software, including provable design algorithms that account for continuous flexibility during design and model conformational entropy. Finally, we show here empirically that osprey 3.0 accurately predicts the effect of mutations on protein-protein binding. Osprey 3.0 is available at http://www.cs.duke.edu/donaldlab/osprey.php as free and open-source software. © 2018 Wiley Periodicals, Inc.


Assuntos
Conformação Proteica , Proteínas/química , Software , Algoritmos , Modelos Moleculares , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA