Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Nutrients ; 15(11)2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37299583

RESUMO

(1) Background: Iron deficiency without anemia (IDWA) is a prevalent health concern in premenopausal women. Oral supplementation of iron may be a viable solution to improve blood-iron status in women; however, the effects of a high-dose iron-supplement regimen have been associated with gastrointestinal side effects. Therefore, the purpose of the present study was to evaluate the effectiveness of a low-dose liquid fermented iron-bisglycinate supplement (LIS) on improving blood-iron status in premenopausal women with IDWA without increasing constipation or gastrointestinal distress. (2) Methods: 85 premenopausal women with IDWA (ferritin < 70 ng/dL and hemoglobin > 11.0 g/dL) took a LIS (27 mg) or a placebo (PLA) for 8 weeks. Blood draws were taken at Wk0 and Wk8 of the study to measure serum-iron markers. In addition, surveys of gastrointestinal distress were administered at Wk0, Wk4, and Wk8 while the profile of mood states (POMS) was surveyed at Wk0 and Wk8. (3) Results: Compared to the placebo, the LIS was able to increase serum ferritin (p = 0.03), total serum iron (p = 0.03), and mean corpuscular volume (p = 0.02), while exhibiting no significant interaction in subjective gastrointestinal distress (p > 0.05). No significant effects were detected for POMS (p > 0.05). (4) Conclusions: Supplementing with LIS appears to improve blood-iron status without causing significant gastrointestinal distress in premenopausal women with IDWA.


Assuntos
Anemia Ferropriva , Anemia , Dispepsia , Gastroenteropatias , Deficiências de Ferro , Humanos , Feminino , Valores de Referência , Ferro , Ferritinas , Hemoglobinas/análise , Anemia Ferropriva/tratamento farmacológico
2.
Nutr Health ; : 2601060221142330, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36448321

RESUMO

BACKGROUND: Vitamin E (α-tocopherol) is an essential micronutrient for human health and optimal physiological function. Inadequacy may be common due to a lack of bioavailability. The use of dietary lipids alongside other emulsification agents may elicit more robust serum concentrations of α-tocopherol via improved bioavailability. Therefore, the aim of the study was to examine oral bioavailability of two delivery methods of α-tocopherol, (1) a microemulsion gel formula composed of dietary lipids and other emulsification agents and (2) a dry solid tablet over 12 hours. METHODS: Twelve participants (age = 37.3 ± 9.6 years; height = 173.4 ± 11.8 cm; body mass = 71.2 ± 10.0 kg) participated in a double-blind, randomized, crossover trial comparing two delivery methods both dosed at 288 mg of α-tocopherol. Serum α-tocopherol concentrations were assessed from blood donated by participants at pre-consumption, 2-, 4-, 8-, and 12-hour post-consumption. Study conditions were separated by a 7-day washout. RESULTS: The microemulsion gel formula delivery demonstrated significantly greater area under the curve (p < 0.001) and serum concentration maximums (p = 0.003) for serum α-tocopherol compared to the tablet delivery. No significant differences were detected between conditions for the time to reach concentration maximums (p = 0.375). CONCLUSION: We conclude that a mixture of dietary lipids and emulsification agents in the form of a microemulsion gel formula was able to significantly improve bioavailability of serum α-tocopherol compared to a tablet by yielding higher serum α-tocopherol maximum concentrations and area under the curve over a 12-hour study period despite dosage being matched.

3.
Physiol Behav ; 238: 113461, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34000295

RESUMO

The purpose of this study was to determine the impact of an immersive seminar, which included moderate intensities of physical activity, on learning when compared to traditional lecture format. Twenty-six healthy participants were randomly divided into an immersive seminar or traditional lecture format group and presented material related to positive psychology and human values/beliefs over the course of two days. Physical activity was collected using a bio-harness while salivary cortisol and perceptual measures of well-being were collected over the two days. Performance on an examination related to course material was used to assess learning. Average time spent over 65% of max heart rate, energy expenditure, total bounds, mechanical and physiological load were significantly greater in the immersive seminar group when compared to traditional lecture group. In addition, cortisol levels and perceptual measures of mood, focus, energy, and well-being were significantly greater in the immersive seminar when compared to the traditional lecture format. Participants in the immersive seminar demonstrated significantly greater memory retention of course material 30-days post lecture when compared to the traditional lecture group. These findings support incorporating more physical activity and increasing arousal in order to enhance learning of lecture material.


Assuntos
Avaliação Educacional , Aprendizagem , Nível de Alerta , Exercício Físico , Humanos , Memória
4.
Int J Sports Med ; 42(12): 1070-1082, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33352600

RESUMO

This study investigated the effects of marine phytoplankton supplementation on 1) perceived recovery and ground reaction forces in humans following a non-functional overreaching resistance-training program and 2) myogenic molecular markers associated with muscle cell recovery in a rat model. In the human trial, a 5-week resistance-training program with intentional overreaching on weeks 2 and 5 was implemented. Results indicate that marine phytoplankton prompted positive changes in perceived recovery at post-testing and, while both marine phytoplankton and placebo conditions demonstrated decreased peak and mean rate of force development following the overreaching weeks, placebo remained decreased at post-testing while marine phytoplankton returned to baseline levels. In the rat model, rats were divided into four conditions: (i) control, (ii) exercise, (iii) exercise + marine phytoplankton 2.55 mg·d-1, or (iv) exercise+marine phytoplankton 5.1 mg·d-1. Rats in exercising conditions performed treadmill exercise 5 d·wk-1 for 6 weeks. Marine phytoplankton in exercising rats increased positive and decrease negative myogenic factors regulating satellite cell proliferation. Taken together, marine phytoplankton improved perceptual and functional indices of exercise recovery in an overreaching human model and, mechanistically, this could be driven through cell cycle regulation and a potential to improve protein turnover.


Assuntos
Desenvolvimento Muscular/fisiologia , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Fitoplâncton , Treinamento Resistido/métodos , Animais , Biomarcadores/sangue , Contagem de Células , Ciclo Celular/fisiologia , Método Duplo-Cego , Feminino , Humanos , Masculino , Condicionamento Físico Animal , Ratos , Ratos Wistar
5.
Nutr Metab Insights ; 13: 1178638820949239, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33061414

RESUMO

BACKGROUND: Muscle mass is an important determinant of metabolic health and physical function. It has previously been demonstrated that the postprandial rise in circulating essential amino acids acts as the main stimulus for muscle protein synthesis (MPS). The current study investigated the postprandial plasma essential amino acid (EAA) and branched-chain amino acid (BCAA) responses of (1) Hydrolyzed whey protein isolate (HWPI) compared to plasma treated non-hydrolyzed whey protein isolate (PT-NHWPI), (2) standard branch-chain amino acids (S-BCAA) compared to plasma treated branch-chained amino acids (PT-BCAA), (3) standard pea protein (S-PP), compared to plasma treated pea protein (PT-PP), and (4) HWPI compared to PT-PP. METHODS: Ten subjects (24.6 ± 5.3 years; 178.8 ± 8.1 cm; 78.6 ± 10.1 kg) participated in a double-blind, randomized, crossover trial comparing four separate protein conditions (HWPI, PT-NHWPI, S-PP, PT-PP). A separate cohort of ten subjects (26.4 ± 7.4 years; 178.8 ± 5.9 cm; 85 ± 12.3 kg) participated in a double-blind randomized, crossover trial comparing two branch-chain amino acid conditions: S-BCAA and PT-BCAA. All conditions were administered following a 7-day washout. Plasma EAA and BCAA concentrations were assessed from blood donated by subjects at pre-consumption, 30-, 60-, 90-, 120-, and 180 minutes post-consumption. RESULTS: Blood plasma levels of total EAA and BCAA concentration were significantly greater in all treated conditions at 30-, 60-, 90-, and 120 minutes post consumption (P < .05). There were no differences between PT-PP and HWPI. DISCUSSION: All proteins significantly elevated EAAs, and BCAAs from basal levels. However, we conclude that the consumption of the treated proteins significantly raises blood levels of EAAs, and BCAAs to a greater extent across multiple dairy, vegan, and isolated BCAA conditions. Moreover, atmospheric plasma treatment of a vegan protein source makes its amino acid response similar to whey. Thus, protein supplementation with that has undergone Ingredient Optimized® atmospheric plasma treatment technology may be highly beneficial for improving the blood plasma amino acid response.

6.
J Strength Cond Res ; 34(12): 3463-3474, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28399015

RESUMO

Wilson, JM, Lowery, RP, Roberts, MD, Sharp, MH, Joy, JM, Shields, KA, Partl, JM, Volek, JS, and D'Agostino, DP. Effects of ketogenic dieting on body composition, strength, power, and hormonal profiles in resistance training men. J Strength Cond Res 34(12): 3463-3474, 2020-This study investigated the impact of an isocaloric and isonitrogenous ketogenic diet (KD) versus a traditional western diet (WD) on changes in body composition, performance, blood lipids, and hormonal profiles in resistance-trained athletes. Twenty-five college-aged men were divided into a KD or traditional WD from weeks 1 to 10, with a reintroduction of carbohydrates from weeks 10 to 11, while participating in a resistance training program. Body composition, strength, power, and blood lipid profiles were determined at weeks 0, 10, and 11. A comprehensive metabolic panel and testosterone levels were also measured at weeks 0 and 11. Lean body mass (LBM) increased in both the KD and WD groups (2.4% and 4.4%, p < 0.01) at week 10. However, only the KD group showed an increase in LBM between weeks 10 and 11 (4.8%, p < 0.0001). Finally, fat mass decreased in both the KD (-2.2 ± 1.2 kg) and WD groups (-1.5 ± 1.6 kg). Strength and power increased to the same extent in the WD and KD conditions from weeks 1 to 11. No changes in any serum lipid measures occurred from weeks 1 to 10; however, a rapid reintroduction of carbohydrate from weeks 10 to 11 raised plasma triglyceride levels in the KD group. Total testosterone increased significantly from weeks 0 to 11 in the KD diet (118 ng·dl) as compared to the WD (-36 ng·dl) from pre to post while insulin did not change. The KD can be used in combination with resistance training to cause favorable changes in body composition, performance, and hormonal profiles in resistance-trained men.


Assuntos
Composição Corporal/fisiologia , Dieta Cetogênica/métodos , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Treinamento Resistido/métodos , Testosterona/sangue , Adulto , Atletas , Dieta Ocidental , Humanos , Lipídeos/sangue , Masculino , Adulto Jovem
7.
Nutr Metab Insights ; 12: 1178638819827970, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30886523

RESUMO

BACKGROUND: Muscle mass is an important determinant of metabolic health and physical function. It has previously been demonstrated that the postprandial rise in circulating essential amino acids (EAA) acts as the main stimulus for muscle protein synthesis (MPS). This study investigated postprandial plasma amino acid (AA) responses of 2 different forms of whey protein isolate (WPI) with iso-caloric and iso-nitrogenous profiles to investigate plasma concentrations of EAA. METHODS: In all, 12 healthy men (n = 12) between 19 and 32 years of age were recruited for a randomized, cross-over design, which involved consumption of protein supplements on 2 testing days separated by a 6-day washout period between conditions. On each testing day, subjects consumed either 29.6 g of WPI or WPI + io (whey protein isolate plus Ingredient Optimized Protein®) mixed with 236 mL of water. Plasma EAA and branch chain amino acid (BCAA) concentrations were assessed from whole body donated by subjects at pre-consumption and 30, 60, 90, 120, and 180 minutes post consumption. RESULTS: Plasma levels of total EAA concentration was significantly greater in WPI + io at 30, 60, 90, and 120 minutes post consumption (P < .01, P < .001, P < .01, and P < .01, respectively). Plasma levels of total BCAA concentration was significantly greater in WPI + io at 30, 60, 90, and 120 minutes post consumption (P < .01, P < .001, P < .01, and P < .05, respectively) compared with WPI. For leucine, only WPI + io had elevated levels compared with pre-test at 90 minutes post consumption (P < .001). DISCUSSION: Both conditions significantly elevated EAA, BCAA, and leucine from basal levels. However, we conclude that the consumption of the treated WPI significantly raises plasma EAA, BCAA, and leucine to a greater extent compared with WPI with no treatment. Thus, supplementation with WPI that has undergone Ingredient Optimized® technology may be highly beneficial for those who partake in regular exercise, elderly individuals, or those affected by a reduced sensitivity to amino acids.

8.
J Nutr Metab ; 2018: 7625981, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29854443

RESUMO

INTRODUCTION: Krill oil supplementation has been shown to improve postexercise immune function; however, its effect on muscle hypertrophy is currently unknown. Therefore, the aim of present study was to investigate the ability of krill oil to stimulate mTOR signaling and its ability to augment resistance training-induced changes in body composition and performance. METHODS: C2C12 myoblasts cells were stimulated with krill oil or soy-derived phosphatidylcholine (S-PC), and then, the ratio of P-p70-389 to total p70 was used as readout for mTOR signaling. In double-blind, placebo-controlled study, resistance trained subjects consumed either 3 g krill oil daily or placebo, and each took part in an 8-week periodized resistance training program. Body composition, maximal strength, peak power, and rate of perceived recovery were assessed collectively at the end of weeks 0 and 8. In addition, safety parameters (comprehensive metabolic panel (CMP), complete blood count (CBC), and urine analysis (UA)) and cognitive performance were measured pre- and posttesting. RESULTS: Krill oil significantly stimulated mTOR signaling in comparison to S-PC and control. No differences for markers on the CMP, CBC, or UA were observed. Krill oil significantly increased lean body mass from baseline (p=0.021, 1.4 kg, +2.1%); however, there were no statistically significant differences between groups for any measures taken. CONCLUSION: Krill oil activates mTOR signaling. Krill oil supplementation in athletes is safe, and its effect on resistance exercise deserves further research.

9.
Sports (Basel) ; 6(1)2018 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-29910305

RESUMO

Adopting low carbohydrate, ketogenic diets remains a controversial issue for individuals who resistance train given that this form of dieting has been speculated to reduce skeletal muscle glycogen levels and stifle muscle anabolism. We sought to characterize the effects of a 12-week ketogenic diet (KD) on body composition, metabolic, and performance parameters in participants who trained recreationally at a local CrossFit facility. Twelve participants (nine males and three females, 31 ± 2 years of age, 80.3 ± 5.1 kg body mass, 22.9 ± 2.3% body fat, 1.37 back squat: body mass ratio) were divided into a control group (CTL; n = 5) and a KD group (n = 7). KD participants were given dietary guidelines to follow over 12 weeks while CTL participants were instructed to continue their normal diet throughout the study, and all participants continued their CrossFit training routine for 12 weeks. Pre, 2.5-week, and 12-week anaerobic performance tests were conducted, and pre- and 12-week tests were performed for body composition using dual X-ray absorptiometry (DXA) and ultrasound, resting energy expenditure (REE), blood-serum health markers, and aerobic capacity. Additionally, blood beta hydroxybutyrate (BHB) levels were measured weekly. Blood BHB levels were 2.8- to 9.5-fold higher in KD versus CTL throughout confirming a state of nutritional ketosis. DXA fat mass decreased by 12.4% in KD (p = 0.053). DXA total lean body mass changes were not different between groups, although DXA dual-leg lean mass decreased in the KD group by 1.4% (p = 0.068), and vastus lateralis thickness values decreased in the KD group by ~8% (p = 0.065). Changes in fasting glucose, HDL cholesterol, and triglycerides were similar between groups, although LDL cholesterol increased ~35% in KD (p = 0.048). Between-group changes in REE, one-repetition maximum (1-RM) back squat, 400 m run times, and VO2peak were similar between groups. While our n-sizes were limited, these preliminary data suggest that adopting a ketogenic diet causes marked reductions in whole-body adiposity while not impacting performance measures in recreationally-trained CrossFit trainees. Whether decrements in dual-leg muscle mass and vastus lateralis thickness in KD participants were due to fluid shifts remain unresolved, and increased LDL-C in these individuals warrants further investigation.

10.
Eur J Nutr ; 57(3): 929-938, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28204880

RESUMO

PURPOSE: The optimal health benefits of curcumin are limited by its low solubility in water and corresponding poor intestinal absorption. Cyclodextrins (CD) can form inclusion complexes on a molecular basis with lipophilic compounds, thereby improving aqueous solubility, dispersibility, and absorption. In this study, we investigated the bioavailability of a new γ-cyclodextrin curcumin formulation (CW8). This formulation was compared to a standardized unformulated curcumin extract (StdC) and two commercially available formulations with purported increased bioavailability: a curcumin phytosome formulation (CSL) and a formulation of curcumin with essential oils of turmeric extracted from the rhizome (CEO). METHODS: Twelve healthy human volunteers participated in a double-blinded, cross-over study. The plasma concentrations of the individual curcuminoids that are present in turmeric (namely curcumin, demethoxycurcumin, and bisdemethoxycurcumin) were determined at baseline and at various intervals after oral administration over a 12-h period. RESULTS: CW8 showed the highest plasma concentrations of curcumin, demethoxycurcumin, and total curcuminoids, whereas CSL administration resulted in the highest levels of bisdemethoxycurcumin. CW8 (39-fold) showed significantly increased relative bioavailability of total curcuminoids (AUC0-12) in comparison with the unformulated StdC. CONCLUSION: The data presented suggest that γ-cyclodextrin curcumin formulation (CW8) significantly improves the absorption of curcuminoids in healthy humans.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Antioxidantes/administração & dosagem , Curcumina/administração & dosagem , Suplementos Nutricionais , Aditivos Alimentares/química , Absorção Intestinal , gama-Ciclodextrinas/química , Adulto , Antineoplásicos Fitogênicos/sangue , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/metabolismo , Antioxidantes/análise , Antioxidantes/química , Antioxidantes/metabolismo , Área Sob a Curva , Estudos de Coortes , Estudos Cross-Over , Curcumina/análogos & derivados , Curcumina/análise , Curcumina/química , Curcumina/metabolismo , Diarileptanoides , Método Duplo-Cego , Feminino , Manipulação de Alimentos , Humanos , Masculino , Valor Nutritivo , Adulto Jovem
11.
J Strength Cond Res ; 32(8): 2233-2242, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28399016

RESUMO

Sharp, MH, Lowery, RP, Shields, KA, Lane, JR, Gray, JL, Partl, JM, Hayes, DW, Wilson, GJ, Hollmer, CA, Minivich, JR, and Wilson, JM. The effects of beef, chicken, or whey protein after workout on body composition and muscle performance. J Strength Cond Res 32(8): 2233-2242, 2018-The purpose of this study was to determine the effects of postworkout consumption of beef protein isolate (Beef), hydrolyzed chicken protein (Chx), or whey protein concentrate (WPC), compared with a control on body composition and muscle performance during 8 weeks of resistance training. Forty-one men and women were randomized into 4 groups: WPC (m = 5, f = 5; age [years] = 19 ± 2, height [cm] = 171 ± 10, mass [kg] = 74.60 ± 14.19), Beef (m = 5, f = 5; age [years] = 22 ± 4, height [cm] = 170 ± 7, mass [kg] = 70.13 ± 8.16), Chx (m = 5, f = 6; Age [years] = 21 ± 2, height [cm] = 169 ± 9, mass [kg] = 74.52 ± 13.83), and Maltodextrin (control) (m = 4, f = 6; age [years] = 21 ± 2, height [cm] = 170 ± 9, mass [kg] = 73.18 ± 10.96). Subjects partook in an 8-week periodized resistance training program. Forty-six grams of protein or a control were consumed immediately after training or at similar times on off-days. Dual-energy x-ray absorptiometry was used to determine changes in body composition. Maximum strength was assessed by 1 repetition maximum for bench press (upper body) and deadlift (lower body). Power output was measured using cycle ergometer. Whey protein concentrate (52.48 ± 11.15 to 54.96 ± 11.85 kg), Beef (51.68 ± 7.61 to 54.65 ± 8.67 kg), and Chx (52.97 ± 12.12 to 54.89 ± 13.43 kg) each led to a significant increase in lean body mass compared with baseline (p < 0.0001), whereas the control condition did not (53.14 ± 11.35 to 54.19 ± 10.74 kg). Fat loss was also significantly decreased at 8 weeks compared to baseline for all protein sources (p < 0.0001; WPC: 18.70 ± 7.38 to 17.16 ± 7.18 kg; Beef: 16.43 ± 5.71 to 14.65 ± 5.41 kg; Chx: 17.58 ± 5.57 to 15.87 ± 6.07 kg), but not the control condition (16.29 ± 7.14 to 14.95 ± 7.72 kg). One repetition maximum for both deadlift and bench press was significantly increased for all treatment groups when compared with baseline. No differences in strength were noted between conditions. Overall, the results of this study demonstrate that consuming quality sources of protein from meat or WPC lead to significant benefits in body composition compared with control.


Assuntos
Composição Corporal/efeitos dos fármacos , Suplementos Nutricionais , Força Muscular , Treinamento Resistido , Proteínas do Soro do Leite/farmacologia , Absorciometria de Fóton , Adolescente , Adulto , Animais , Bovinos , Galinhas , Método Duplo-Cego , Feminino , Humanos , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Polissacarídeos/farmacologia , Carne Vermelha , Adulto Jovem
12.
Nutrients ; 9(9)2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28914762

RESUMO

We determined the short- and long-term effects of a ketogenic diet (KD) or ketone salt (KS) supplementation on multi-organ oxidative stress and mitochondrial markers. For short-term feedings, 4 month-old male rats were provided isocaloric amounts of KD (n = 10), standard chow (SC) (n = 10) or SC + KS (~1.2 g/day, n = 10). For long-term feedings, 4 month-old male rats were provided KD (n = 8), SC (n = 7) or SC + KS (n = 7) for 8 months and rotarod tested every 2 months. Blood, brain (whole cortex), liver and gastrocnemius muscle were harvested from all rats for biochemical analyses. Additionally, mitochondria from the brain, muscle and liver tissue of long-term-fed rats were analyzed for mitochondrial quantity (maximal citrate synthase activity), quality (state 3 and 4 respiration) and reactive oxygen species (ROS) assays. Liver antioxidant capacity trended higher in short-term KD- and SC + KS-fed versus SC-fed rats, and short-term KD-fed rats exhibited significantly greater serum ketones compared to SC + KS-fed rats indicating that the diet (not KS supplementation) induced ketonemia. In long term-fed rats: (a) serum ketones were significantly greater in KD- versus SC- and SC + KS-fed rats; (b) liver antioxidant capacity and glutathione peroxidase protein was significantly greater in KD- versus SC-fed rats, respectively, while liver protein carbonyls were lowest in KD-fed rats; and (c) gastrocnemius mitochondrial ROS production was significantly greater in KD-fed rats versus other groups, and this paralleled lower mitochondrial glutathione levels. Additionally, the gastrocnemius pyruvate-malate mitochondrial respiratory control ratio was significantly impaired in long-term KD-fed rats, and gastrocnemius mitochondrial quantity was lowest in these animals. Rotarod performance was greatest in KD-fed rats versus all other groups at 2, 4 and 8 months, although there was a significant age-related decline in performance existed in KD-fed rats which was not evident in the other two groups. In conclusion, short- and long-term KD improves select markers of liver oxidative stress compared to SC feeding, although long-term KD feeding may negatively affect skeletal muscle mitochondrial physiology.


Assuntos
Biomarcadores/sangue , Dieta Cetogênica , Cetonas/administração & dosagem , Mitocôndrias/metabolismo , Estresse Oxidativo , Sais/administração & dosagem , Ácido 3-Hidroxibutírico/sangue , Animais , Índice de Massa Corporal , Masculino , Ratos , Ratos Endogâmicos F344 , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
13.
Front Physiol ; 8: 518, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28775694

RESUMO

Alterations in transcriptional and translational mechanisms occur during skeletal muscle aging and such changes may contribute to age-related atrophy. Herein, we examined markers related to global transcriptional output (i.e., myonuclear number, total mRNA and RNA pol II levels), translational efficiency [i.e., eukaryotic initiation and elongation factor levels and muscle protein synthesis (MPS) levels] and translational capacity (ribosome density) in the slow-twitch soleus and fast-twitch plantaris muscles of male Fischer 344 rats aged 3, 6, 12, 18, and 24 months (n = 9-10 per group). We also examined alterations in markers of proteolysis and oxidative stress in these muscles (i.e., 20S proteasome activity, poly-ubiquinated protein levels and 4-HNE levels). Notable plantaris muscle observations included: (a) fiber cross sectional area (CSA) was 59% (p < 0.05) and 48% (p < 0.05) greater in 12 month vs. 3 month and 24 month rats, respectively, suggesting a peak lifetime value near 12 months and age-related atrophy by 24 months, (b) MPS levels were greatest in 18 month rats (p < 0.05) despite the onset of atrophy, (c) while regulators of ribosome biogenesis [c-Myc and upstream binding factor (UBF) protein levels] generally increased with age, ribosome density linearly decreased from 3 months of age and RNA polymerase (Pol) I protein levels were lowest in 24 month rats, and d) 20S proteasome activity was robustly up-regulated in 6 and 24 month rats (p < 0.05). Notable soleus muscle observations included: (a) fiber CSA was greatest in 6 month rats and was maintained in older age groups, and (b) 20S proteasome activity was modestly but significantly greater in 24 month vs. 3/12/18 month rats (p < 0.05), and (c) total mRNA levels (suggestive of transcriptional output) trended downward in older rats despite non-significant between-group differences in myonuclear number and/or RNA Pol II protein levels. Collectively, these findings suggest that plantaris, not soleus, atrophy occurs following 12 months of age in male Fisher rats and this may be due to translational deficits (i.e., changes in MPS and ribosome density) and/or increases in proteolysis rather than increased oxidative stress and/or alterations in global transcriptional mechanisms.

14.
J Am Coll Nutr ; 36(3): 177-183, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28080323

RESUMO

OBJECTIVE: Oral adenosine-5'-triphosphate (ATP) administration has failed to increase plasma ATP levels; however, chronic supplementation with ATP has shown to increase power, strength, lean body mass, and blood flow in trained athletes. The purpose of this study was to investigate the effects of ATP supplementation on postexercise ATP levels and on muscle activation and excitability and power following a repeated sprint bout. METHODS: In a double-blind, placebo-controlled, randomized design, 42 healthy male individuals were given either 400 mg of ATP as disodium salt or placebo for 2 weeks prior to an exercise bout. During the exercise bout, muscle activation and excitability (ME, ratio of power output to muscle activation) and Wingate test peak power were measured during all sprints. ATP and metabolites were measured at baseline, after supplementation, and immediately following exercise. RESULTS: Oral ATP supplementation prevented a drop in ATP, adenosine-5'-diphosphate (ADP), and adenosine-5'-monophosphate (AMP) levels postexercise (p < 0.05). No group by time interaction was observed for muscle activation. Following the supplementation period, muscle excitability significantly decreased in later bouts 8, 9, and 10 in the placebo group (-30.5, -28.3, and -27.9%, respectively; p < 0.02), whereas ATP supplementation prevented the decline in later bouts. ATP significantly increased Wingate peak power in later bouts compared to baseline (bout 8: +18.3%, bout 10: +16.3%). CONCLUSIONS: Oral ATP administration prevents exercise-induced declines in ATP and its metabolite and enhances peak power and muscular excitability, which may be beneficial for sports requiring repeated high-intensity sprinting bouts.


Assuntos
Trifosfato de Adenosina/farmacologia , Desempenho Atlético , Exercício Físico , Músculo Esquelético/efeitos dos fármacos , Trifosfato de Adenosina/administração & dosagem , Administração Oral , Adolescente , Método Duplo-Cego , Humanos , Masculino , Músculo Esquelético/fisiologia , Adulto Jovem
15.
Front Physiol ; 7: 533, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27877138

RESUMO

Purpose: Ketogenic diets (KD) can facilitate weight loss, but their effects on skeletal muscle remain equivocal. In this experiment we investigated the effects of two diets on skeletal muscle mitochondrial coupling, mitochondrial complex activity, markers of oxidative stress, and gene expression in sedentary and resistance exercised rats. Methods: Male Sprague-Dawley rats (9-10 weeks of age, 300-325 g) were fed isocaloric amounts of either a KD (17 g/day, 5.2 kcal/g, 20.2% protein, 10.3% CHO, 69.5% fat, n = 16) or a Western diet (WD) (20 g/day, 4.5 kcal/g, 15.2% protein, 42.7% CHO, 42.0% fat, n = 16) for 6 weeks. During these 6 weeks animals were either sedentary (SED, n = 8 per diet group) or voluntarily exercised using resistance-loaded running wheels (EXE, n = 8 per diet group). Gastrocnemius was excised and used for mitochondrial isolation and biochemical analyses. Results: In the presence of a complex II substrate, the respiratory control ratio (RCR) of isolated gastrocnemius mitochondria was higher (p < 0.05) in animals fed the KD compared to animals fed the WD. Complex I and IV enzyme activity was higher (p < 0.05) in EXE animals regardless of diet. SOD2 protein levels and GLUT4 and PGC1α mRNA expression were higher (p < 0.05) in EXE animals regardless of diet. Conclusion: Our data indicate that skeletal muscle mitochondrial coupling of complex II substrates is more efficient in chronically resistance trained rodents fed a KD. These findings may provide merit for further investigation, perhaps on humans.

16.
PeerJ ; 4: e2276, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27547577

RESUMO

Objective. Probiotics have been reported to support healthy digestive and immune function, aid in protein absorption, and decrease inflammation. Further, a trend to increase vertical jump power has been observed following co-administration of protein and probiotics in resistance-trained subjects. However, to date the potential beneficial effect of probiotics on recovery from high intensity resistance exercise have yet to be explored. Therefore, this study examined the effect of co-administration of protein and probiotics on muscle damage, recovery and performance following a damaging exercise bout. Design. Twenty nine (n = 29) recreationally-trained males (mean ± SD; 21.5 ± 2.8 years; 89.7 ± 28.2 kg; 177.4 ± 8.0 cm) were assigned to consume either 20 g of casein (PRO) or 20 g of casein plus probiotic (1 billion CFU Bacillus coagulans GBI-30, 6086, PROBC) in a crossover, diet-controlled design. After two weeks of supplementation, perceptional measures, athletic performance, and muscle damage were analyzed following a damaging exercise bout. Results. The damaging exercise bout significantly increased muscle soreness, and reduced perceived recovery; however, PROBC significantly increased recovery at 24 and 72 h, and decreased soreness at 72 h post exercise in comparison to PRO. Perceptual measures were confirmed by increases in CK (PRO: +266.8%, p = 0.0002; PROBC: +137.7%, p = 0.01), with PROBC showing a trend towards reduced muscle damage (p = 0.08). The muscle-damaging exercise resulted in significantly increased muscle swelling and Blood Urea Nitrogen levels in both conditions with no difference between groups. The strenuous exercise significantly reduced athletic performance in PRO (Wingate Peak Power; PRO: (-39.8 watts, -5.3%, p = 0.03)), whereas PROBC maintained performance (+10.1 watts, +1.7%). Conclusions. The results provide evidence that probiotic supplementation in combination with protein tended to reduce indices of muscle damage, improves recovery, and maintains physical performance subsequent to damaging exercise.

17.
Am J Physiol Regul Integr Comp Physiol ; 311(2): R337-51, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27357802

RESUMO

We investigated the effects of different diets on adipose tissue, liver, serum morphology, and biomarkers in rats that voluntarily exercised. Male Sprague-Dawley rats (∼9-10 wk of age) exercised with resistance-loaded voluntary running wheels (EX; wheels loaded with 20-60% body mass) or remained sedentary (SED) over 6 wk. EX and SED rats were provided isocaloric amounts of either a ketogenic diet (KD; 20.2%-10.3%-69.5% protein-carbohydrate-fat), a Western diet (WD; 15.2%-42.7-42.0%), or standard chow (SC; 24.0%-58.0%-18.0%); n = 8-10 in each diet for SED and EX rats. Following the intervention, body mass and feed efficiency were lowest in KD rats, independent of exercise (P < 0.05). Absolute and relative (body mass-adjusted) omental adipose tissue (OMAT) masses were greatest in WD rats (P < 0.05), and OMAT adipocyte diameters were lowest in KD-fed rats (P < 0.05). None of the assayed OMAT or subcutaneous (SQ) protein markers were affected by the diets [total acetyl coA carboxylase (ACC), CD36, and CEBPα or phosphorylated NF-κB/p65, AMPKα, and hormone-sensitive lipase (HSL)], although EX unexpectedly altered some OMAT markers (i.e., higher ACC and phosphorylated NF-κB/p65, and lower phosphorylated AMPKα and phosphorylated HSL). Liver triglycerides were greatest in WD rats (P < 0.05), and liver phosphorylated NF-κB/p65 was lowest in KD rats (P < 0.05). Serum insulin, glucose, triglycerides, and total cholesterol were greater in WD and/or SC rats compared with KD rats (P < 0.05), and serum ß-hydroxybutyrate was greater in KD vs. SC rats (P < 0.05). In conclusion, KD rats presented a healthier metabolic profile, albeit the employed exercise protocol minimally impacts any potentiating effects that KD has on fat loss.


Assuntos
Tecido Adiposo/fisiologia , Peso Corporal/fisiologia , Dieta Cetogênica , Ingestão de Alimentos/fisiologia , Fígado/fisiologia , Treinamento Resistido , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Dieta Ocidental , Metabolismo Energético/fisiologia , Masculino , Tamanho do Órgão/fisiologia , Ratos , Ratos Sprague-Dawley , Descanso , Comportamento Sedentário , Volição
18.
J Am Coll Nutr ; 35(8): 679-691, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27333407

RESUMO

OBJECTIVE: The purpose of this study was to investigate the effects of Fortetropin on skeletal muscle growth and strength in resistance-trained individuals and to investigate the anabolic and catabolic signaling effects using human and rodent models. METHODS: In the rodent model, male Wistar rats (250 g) were gavage fed with either 1.2 ml of tap water control (CTL) or 0.26 g Fortetropin for 8 days. Then rats participated in a unilateral plantarflexion exercise bout. Nonexercised and exercised limbs were harvested at 180 minutes following and analyzed for gene and protein expression relative to mammalian target of rapamycin (mTOR) and ubiquitin signaling. For the human model, 45 (of whom 37 completed the study), resistance-trained college-aged males were divided equally into 3 groups receiving a placebo macronutrient matched control, 6.6 or 19.8 g of Fortetropin supplementation during 12 weeks of resistance training. Lean mass, muscle thickness, and lower and upper body strength were measured before and after 12 weeks of training. RESULTS: The human study results indicated a Group × Time effect (p ≤ 0.05) for lean mass in which the 6.6 g (+1.7 kg) and 19.8 g (+1.68 kg) but not placebo (+0.6 kg) groups increased lean mass. Similarly, there was a Group × Time effect for muscle thickness (p ≤ 0.05), which increased in the experimental groups only. All groups increased equally in bench press and leg press strength. In the rodent model, a main effect for exercise (p ≤ 0.05) in which the control plus exercise but not Fortetropin plus exercise increased both ubiquitin monomer protein expression and polyubiquitination. mTOR signaling was elevated to a greater extent in the Fortetropin exercising conditions as indicated by greater phosphorylation status of 4EBP1, rp6, and p70S6K for both exercising conditions. CONCLUSIONS: Fortetropin supplementation increases lean body mass (LBM) and decreases markers of protein breakdown while simultaneously increasing mTOR signaling.


Assuntos
Composição Corporal/efeitos dos fármacos , Força Muscular/efeitos dos fármacos , Proteolipídeos/administração & dosagem , Adolescente , Animais , Dieta , Suplementos Nutricionais , Humanos , Masculino , Músculo Esquelético/efeitos dos fármacos , Miostatina/sangue , Placebos , Ratos , Ratos Wistar , Treinamento Resistido , Transdução de Sinais , Serina-Treonina Quinases TOR/fisiologia , Ubiquitina/fisiologia , Adulto Jovem
19.
PLoS One ; 11(5): e0155153, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27182886

RESUMO

BACKGROUND: The primary purpose of this investigation was to examine the effects of arachidonic acid (ARA) supplementation on functional performance and body composition in trained males. In addition, we performed a secondary study looking at molecular responses of ARA supplementation following an acute exercise bout in rodents. METHODS: Thirty strength-trained males (age: 20.4 ± 2.1 yrs) were randomly divided into two groups: ARA or placebo (i.e. CTL). Then, both groups underwent an 8-week, 3-day per week, non-periodized training protocol. Quadriceps muscle thickness, whole-body composition scan (DEXA), muscle strength, and power were assessed at baseline and post-test. In the rodent model, male Wistar rats (~250 g, ~8 weeks old) were pre-fed with either ARA or water (CTL) for 8 days and were fed the final dose of ARA prior to being acutely strength trained via electrical stimulation on unilateral plantar flexions. A mixed muscle sample was removed from the exercised and non-exercised leg 3 hours post-exercise. RESULTS: Lean body mass (2.9%, p<0.0005), upper-body strength (8.7%, p<0.0001), and peak power (12.7%, p<0.0001) increased only in the ARA group. For the animal trial, GSK-ß (Ser9) phosphorylation (p<0.001) independent of exercise and AMPK phosphorylation after exercise (p-AMPK less in ARA, p = 0.041) were different in ARA-fed versus CTL rats. CONCLUSIONS: Our findings suggest that ARA supplementation can positively augment strength-training induced adaptations in resistance-trained males. However, chronic studies at the molecular level are required to further elucidate how ARA combined with strength training affect muscle adaptation.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Ácidos Araquidônicos/farmacologia , Composição Corporal/efeitos dos fármacos , Suplementos Nutricionais , Metabolismo Energético/efeitos dos fármacos , Fenômenos Fisiológicos Musculoesqueléticos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Adolescente , Adulto , Ração Animal , Animais , Composição Corporal/genética , Metabolismo Energético/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Modelos Animais , Desenvolvimento Muscular/efeitos dos fármacos , Desenvolvimento Muscular/genética , Força Muscular/efeitos dos fármacos , Fosfoproteínas/metabolismo , Condicionamento Físico Animal , Biossíntese de Proteínas , Proteômica/métodos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Treinamento Resistido , Serina-Treonina Quinases TOR/metabolismo , Adulto Jovem
20.
Sports Med ; 46(10): 1407-18, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27071990

RESUMO

Many sports involve repeated bouts of high-intensity exercise. High-intensity exercise is compromised, however, by the early onset of exercise-induced fatigue. Metabolic by-products, ion dysbalance and amount of phosphocreatine are considered the main peripheral causes of fatigue during high-intensity exercise. Intake of nutritional ergogenic aids is commonplace to enhance performance of high-intensity exercise by offsetting the potential mechanisms of fatigue. Creatine, probably one of the best known nutritional aids to enhance performance of high-intensity exercise, has convincingly substantiated its ergogenic potential. Although multi-ingredient supplements are now common, the justification for effectiveness is mostly based on observations with single intake of those ingredients. In this narrative review, the main focus is on the evidence of the effect of co-ingestion of ergogenic aids on performance of high intensity exercise for which the single intake has shown beneficial effects on high-intensity performance.


Assuntos
Desempenho Atlético/fisiologia , Suplementos Nutricionais , Treinamento Intervalado de Alta Intensidade , Substâncias para Melhoria do Desempenho/administração & dosagem , Cafeína/administração & dosagem , Creatina/administração & dosagem , Metabolismo Energético , Fadiga/prevenção & controle , Humanos , Bicarbonato de Sódio/administração & dosagem , beta-Alanina/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA