Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(22): 12161-12173, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37956308

RESUMO

Chromatin remodeling is essential to allow full development of alternative gene expression programs in response to environmental changes. In fission yeast, oxidative stress triggers massive transcriptional changes including the activation of hundreds of genes, with the participation of histone modifying complexes and chromatin remodelers. DNA transcription is associated to alterations in DNA topology, and DNA topoisomerases facilitate elongation along gene bodies. Here, we test whether the DNA topoisomerase Top1 participates in the RNA polymerase II-dependent activation of the cellular response to oxidative stress. Cells lacking Top1 are resistant to H2O2 stress. The transcriptome of Δtop1 strain was not greatly affected in the absence of stress, but activation of the anti-stress gene expression program was more sustained than in wild-type cells. Top1 associated to stress open reading frames. While the nucleosomes of stress genes are partially and transiently evicted during stress, the chromatin configuration remains open for longer times in cells lacking Top1, facilitating RNA polymerase II progression. We propose that, by removing DNA tension arising from transcription, Top1 facilitates nucleosome reassembly and works in synergy with the chromatin remodeler Hrp1 as opposing forces to transcription and to Snf22 / Hrp3 opening remodelers.


Assuntos
DNA Topoisomerases Tipo I , Nucleossomos , Schizosaccharomyces , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/genética , DNA/metabolismo , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Transcrição Gênica
2.
Nucleic Acids Res ; 48(D1): D941-D947, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31584097

RESUMO

To sustain and develop the largest fully open human genomic resources the International Genome Sample Resource (IGSR) (https://www.internationalgenome.org) was established. It is built on the foundation of the 1000 Genomes Project, which created the largest openly accessible catalogue of human genomic variation developed from samples spanning five continents. IGSR (i) maintains access to 1000 Genomes Project resources, (ii) updates 1000 Genomes Project resources to the GRCh38 human reference assembly, (iii) adds new data generated on 1000 Genomes Project cell lines, (iv) shares data from samples with a similarly open consent to increase the number of samples and populations represented in the resources and (v) provides support to users of these resources. Among recent updates are the release of variation calls from 1000 Genomes Project data calculated directly on GRCh38 and the addition of high coverage sequence data for the 2504 samples in the 1000 Genomes Project phase three panel. The data portal, which facilitates web-based exploration of the IGSR resources, has been updated to include samples which were not part of the 1000 Genomes Project and now presents a unified view of data and samples across almost 5000 samples from multiple studies. All data is fully open and publicly accessible.


Assuntos
Biologia Computacional , Bases de Dados Genéticas , Variação Genética , Genoma Humano , Genômica , Software , Biologia Computacional/métodos , Genômica/métodos , Humanos , Interface Usuário-Computador , Navegador
3.
Genome Biol ; 20(1): 187, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477173

RESUMO

BACKGROUND: Tsetse flies (Glossina sp.) are the vectors of human and animal trypanosomiasis throughout sub-Saharan Africa. Tsetse flies are distinguished from other Diptera by unique adaptations, including lactation and the birthing of live young (obligate viviparity), a vertebrate blood-specific diet by both sexes, and obligate bacterial symbiosis. This work describes the comparative analysis of six Glossina genomes representing three sub-genera: Morsitans (G. morsitans morsitans, G. pallidipes, G. austeni), Palpalis (G. palpalis, G. fuscipes), and Fusca (G. brevipalpis) which represent different habitats, host preferences, and vectorial capacity. RESULTS: Genomic analyses validate established evolutionary relationships and sub-genera. Syntenic analysis of Glossina relative to Drosophila melanogaster shows reduced structural conservation across the sex-linked X chromosome. Sex-linked scaffolds show increased rates of female-specific gene expression and lower evolutionary rates relative to autosome associated genes. Tsetse-specific genes are enriched in protease, odorant-binding, and helicase activities. Lactation-associated genes are conserved across all Glossina species while male seminal proteins are rapidly evolving. Olfactory and gustatory genes are reduced across the genus relative to other insects. Vision-associated Rhodopsin genes show conservation of motion detection/tracking functions and variance in the Rhodopsin detecting colors in the blue wavelength ranges. CONCLUSIONS: Expanded genomic discoveries reveal the genetics underlying Glossina biology and provide a rich body of knowledge for basic science and disease control. They also provide insight into the evolutionary biology underlying novel adaptations and are relevant to applied aspects of vector control such as trap design and discovery of novel pest and disease control strategies.


Assuntos
Genoma de Inseto , Genômica , Insetos Vetores/genética , Trypanosoma/parasitologia , Moscas Tsé-Tsé/genética , Animais , Elementos de DNA Transponíveis/genética , Drosophila melanogaster/genética , Feminino , Regulação da Expressão Gênica , Genes de Insetos , Genes Ligados ao Cromossomo X , Geografia , Proteínas de Insetos/genética , Masculino , Mutagênese Insercional/genética , Filogenia , Sequências Repetitivas de Ácido Nucleico/genética , Homologia de Sequência de Aminoácidos , Sintenia/genética , Wolbachia/genética
4.
Wellcome Open Res ; 4: 50, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32175479

RESUMO

We present biallelic SNVs called from 2,548 samples across 26 populations from the 1000 Genomes Project, called directly on GRCh38. We believe this will be a useful reference resource for those using GRCh38, representing an improvement over the "lift-overs" of the 1000 Genomes Project data that have been available to date and providing a resource necessary for the full adoption of GRCh38 by the community. Here, we describe how the call set was created and provide benchmarking data describing how our call set compares to that produced by the final phase of the 1000 Genomes Project on GRCh37.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA