Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Chem ; 10: 861209, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35494659

RESUMO

The COVID-19 pandemic continues unabated, emphasizing the need for additional antiviral treatment options to prevent hospitalization and death of patients infected with SARS-CoV-2. The papain-like protease (PLpro) domain is part of the SARS-CoV-2 non-structural protein (nsp)-3, and represents an essential protease and validated drug target for preventing viral replication. PLpro moonlights as a deubiquitinating (DUB) and deISGylating enzyme, enabling adaptation of a DUB high throughput (HTS) screen to identify PLpro inhibitors. Drug repurposing has been a major focus through the COVID-19 pandemic as it may provide a fast and efficient route for identifying clinic-ready, safe-in-human antivirals. We here report our effort to identify PLpro inhibitors by screening the ReFRAME library of 11,804 compounds, showing that none inhibit PLpro with any reasonable activity or specificity to justify further progression towards the clinic. We also report our latest efforts to improve piperidine-scaffold inhibitors, 5c and 3k, originally developed for SARS-CoV PLpro. We report molecular details of binding and selectivity, as well as in vitro absorption, distribution, metabolism and excretion (ADME) studies of this scaffold. A co-crystal structure of SARS-CoV-2 PLpro bound to inhibitor 3k guides medicinal chemistry efforts to improve binding and ADME characteristics. We arrive at compounds with improved and favorable solubility and stability characteristics that are tested for inhibiting viral replication. Whilst still requiring significant improvement, our optimized small molecule inhibitors of PLpro display decent antiviral activity in an in vitro SARS-CoV-2 infection model, justifying further optimization.

2.
J Biol Chem ; 291(24): 12641-12657, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27036939

RESUMO

CXCR4 is a G protein-coupled receptor with excellent potential as a therapeutic target for a range of clinical conditions, including stem cell mobilization, cancer prognosis and treatment, fibrosis therapy, and HIV infection. We report here the development of a fully human single-domain antibody-like scaffold termed an "i-body," the engineering of which produces an i-body library possessing a long complementarity determining region binding loop, and the isolation and characterization of a panel of i-bodies with activity against human CXCR4. The CXCR4-specific i-bodies show antagonistic activity in a range of in vitro and in vivo assays, including inhibition of HIV infection, cell migration, and leukocyte recruitment but, importantly, not the mobilization of hematopoietic stem cells. Epitope mapping of the three CXCR4 i-bodies AM3-114, AM4-272, and AM3-523 revealed binding deep in the binding pocket of the receptor.


Assuntos
Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/imunologia , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/farmacologia , Animais , Especificidade de Anticorpos/imunologia , Sítios de Ligação/imunologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/imunologia , Células Cultivadas , Cristalografia por Raios X , Mapeamento de Epitopos , Células HEK293 , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Células HL-60 , Humanos , Células Jurkat , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Modelos Moleculares , Ligação Proteica/imunologia , Domínios Proteicos , Receptores CXCR4/metabolismo , Anticorpos de Domínio Único/química , Ressonância de Plasmônio de Superfície
3.
Cell Rep ; 1(3): 185-90, 2012 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-22832192

RESUMO

Plasminogen is the proenzyme precursor of the primary fibrinolytic protease plasmin. Circulating plasminogen, which comprises a Pan-apple (PAp) domain, five kringle domains (KR1-5), and a serine protease (SP) domain, adopts a closed, activation-resistant conformation. The kringle domains mediate interactions with fibrin clots and cell-surface receptors. These interactions trigger plasminogen to adopt an open form that can be cleaved and converted to plasmin by tissue-type and urokinase-type plasminogen activators. Here, the structure of closed plasminogen reveals that the PAp and SP domains, together with chloride ions, maintain the closed conformation through interactions with the kringle array. Differences in glycosylation alter the position of KR3, although in all structures the loop cleaved by plasminogen activators is inaccessible. The ligand-binding site of KR1 is exposed and likely governs proenzyme recruitment to targets. Furthermore, analysis of our structure suggests that KR5 peeling away from the PAp domain may initiate plasminogen conformational change.


Assuntos
Plasminogênio/química , Cristalografia por Raios X , Ativação Enzimática , Glicosilação , Humanos , Kringles , Modelos Moleculares , Mutação/genética , Ligação Proteica , Estrutura Secundária de Proteína
4.
Methods Enzymol ; 501: 223-35, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22078537

RESUMO

The serpin molecule has evolved an unusual mechanism of inhibition, involving an exposed reactive center loop (RCL) and conformational change to covalently trap a target protease. Successful inhibition of the protease is dependent on the rate of serpin-protease association and the efficiency with which the RCL inserts into ß-sheet A, translocating the covalently bound protease and thereby completing the inhibition process. This chapter describes the kinetic methods used for determining the rate of protease inhibition (k(a)) and the stoichiometry of inhibition. These kinetic variables provide a means to examine different serpin-protease pairings, assess the effects of mutations within a serpin on protease inhibition, and determine the physiologically cognate protease of a serpin.


Assuntos
Bioquímica/métodos , Bioensaio , Serina Proteases/metabolismo , Serpinas/metabolismo , Animais , Sítios de Ligação , Galinhas , Relação Dose-Resposta a Droga , Humanos , Cinética , Ligação Proteica/efeitos dos fármacos , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Estrutura Secundária de Proteína/efeitos dos fármacos , Serina Proteases/química , Serpinas/química , Serpinas/farmacologia , Espectrometria de Fluorescência
5.
J Biol Chem ; 286(28): 24544-52, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21543325

RESUMO

α(2)-Antiplasmin is the physiological inhibitor of plasmin and is unique in the serpin family due to N- and C-terminal extensions beyond its core domain. The C-terminal extension comprises 55 amino acids from Asn-410 to Lys-464, and the lysine residues (Lys-418, Lys-427, Lys-434, Lys-441, Lys-448, and Lys-464) within this region are important in mediating the initial interaction with kringle domains of plasmin. To understand the role of lysine residues within the C terminus of α(2)-antiplasmin, we systematically and sequentially mutated the C-terminal lysines, studied the effects on the rate of plasmin inhibition, and measured the binding affinity for plasmin via surface plasmon resonance. We determined that the C-terminal lysine (Lys-464) is individually most important in initiating binding to plasmin. Using two independent methods, we also showed that the conserved internal lysine residues play a major role mediating binding of the C terminus of α(2)-antiplasmin to kringle domains of plasmin and in accelerating the rate of interaction between α(2)-antiplasmin and plasmin. When the C terminus of α(2)-antiplasmin was removed, the binding affinity for active site-blocked plasmin remained high, suggesting additional exosite interactions between the serpin core and plasmin.


Assuntos
Fibrinolisina/química , alfa 2-Antiplasmina/química , Substituição de Aminoácidos , Domínio Catalítico/fisiologia , Fibrinolisina/genética , Fibrinolisina/metabolismo , Humanos , Mutação de Sentido Incorreto , Mapeamento de Peptídeos/métodos , Ligação Proteica/fisiologia , Domínios e Motivos de Interação entre Proteínas/fisiologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , alfa 2-Antiplasmina/genética , alfa 2-Antiplasmina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA