Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Mol Neurosci ; 13: 80, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714143

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disease in the elderly with a pathogenesis that remains unclear. We aimed to explore its pathogenesis through plasma integrated metabolomics and proteomics analysis. The clinical data of consecutively recruited PD patients and healthy controls were assessed. Fasting plasma samples were obtained and analyzed using metabolomics and proteomics methods. After that, differentially expressed metabolites and proteins were identified for further bioinformatics analysis. No significant difference was found in the clinical data between these two groups. Eighty-three metabolites were differentially expressed in PD patients identified by metabolomics analysis. These metabolites were predominately lipid and lipid-like molecules (63%), among which 25% were sphingolipids. The sphingolipid metabolism pathway was enriched and tended to be activated in the following KEGG pathway analysis. According to the proteomics analysis, forty proteins were identified to be differentially expressed, seven of which were apolipoproteins. Furthermore, five of the six top ranking Gene Ontology terms from cellular components and eleven of the other fourteen Gene Ontology terms from biological processes were directly associated with lipid metabolism. In KEGG pathway analysis, the five enriched pathways were also significantly related with lipid metabolism (p < 0.05). Overall, Parkinson's disease is associated with plasma lipid metabolic disturbance, including an activated sphingolipid metabolism and decreased apolipoproteins.

2.
Zhongguo Zhong Yao Za Zhi ; 42(2): 239-253, 2017 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-28948726

RESUMO

Catechins are the key components of tea and have a great impact on its quality. Catechins can be oxidized to form a new black tea polyphenols, some of which have better pharmacological effect. However, the formation mechanism of these new polyphenols is still unclear. In this paper, oxidation products coming from catechins and the formation mechanism of the new compounds are reviewed.It is the base of further study on theaflavins, thearubigins and theabrownines.


Assuntos
Catequina/química , Polifenóis/química , Chá/química , Camellia sinensis/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA