Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Patterns (N Y) ; 4(12): 100888, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38106608

RESUMO

The core of bodily self-consciousness involves perceiving ownership of one's body. A central question is how body illusions like the rubber hand illusion (RHI) occur. Existing theoretical models still lack satisfying computational explanations from connectionist perspectives, especially for how the brain encodes body perception and generates illusions from neuronal interactions. Moreover, the integration of disability experiments is also neglected. Here, we integrate biological findings of bodily self-consciousness to propose a brain-inspired bodily self-perception model by which perceptions of bodily self are autonomously constructed without any supervision signals. We successfully validated the model with six RHI experiments and a disability experiment on an iCub humanoid robot and simulated environments. The results show that our model can not only well-replicate the behavioral and neural data of monkeys in biological experiments but also reasonably explain the causes and results of RHI at the neuronal level, thus contributing to the revelation of mechanisms underlying RHI.

2.
Patterns (N Y) ; 4(12): 100891, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38106609

RESUMO

Yuxuan Zhao, associate professor, Enmeng Lu, research engineer, and Yi Zeng, professor and lab director, have proposed a brain-inspired bodily self-perception model based on biological findings on monkeys and humans. This model can reproduce various rubber hand illusion (RHI) experiments, which helps reveal the RHI's computational and biological mechanisms. They talk about their view of data science and research plans for brain-inspired robot self-modeling and ethical robots.

3.
Patterns (N Y) ; 4(8): 100789, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37602224

RESUMO

Spiking neural networks (SNNs) serve as a promising computational framework for integrating insights from the brain into artificial intelligence (AI). Existing software infrastructures based on SNNs exclusively support brain simulation or brain-inspired AI, but not both simultaneously. To decode the nature of biological intelligence and create AI, we present the brain-inspired cognitive intelligence engine (BrainCog). This SNN-based platform provides essential infrastructure support for developing brain-inspired AI and brain simulation. BrainCog integrates different biological neurons, encoding strategies, learning rules, brain areas, and hardware-software co-design as essential components. Leveraging these user-friendly components, BrainCog incorporates various cognitive functions, including perception and learning, decision-making, knowledge representation and reasoning, motor control, social cognition, and brain structure and function simulations across multiple scales. BORN is an AI engine developed by BrainCog, showcasing seamless integration of BrainCog's components and cognitive functions to build advanced AI models and applications.

4.
Front Comput Neurosci ; 16: 784967, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35923916

RESUMO

Affective empathy is an indispensable ability for humans and other species' harmonious social lives, motivating altruistic behavior, such as consolation and aid-giving. How to build an affective empathy computational model has attracted extensive attention in recent years. Most affective empathy models focus on the recognition and simulation of facial expressions or emotional speech of humans, namely Affective Computing. However, these studies lack the guidance of neural mechanisms of affective empathy. From a neuroscience perspective, affective empathy is formed gradually during the individual development process: experiencing own emotion-forming the corresponding Mirror Neuron System (MNS)-understanding the emotions of others through the mirror mechanism. Inspired by this neural mechanism, we constructed a brain-inspired affective empathy computational model, this model contains two submodels: (1) We designed an Artificial Pain Model inspired by the Free Energy Principle (FEP) to the simulate pain generation process in living organisms. (2) We build an affective empathy spiking neural network (AE-SNN) that simulates the mirror mechanism of MNS and has self-other differentiation ability. We apply the brain-inspired affective empathy computational model to the pain empathy and altruistic rescue task to achieve the rescue of companions by intelligent agents. To the best of our knowledge, our study is the first one to reproduce the emergence process of mirror neurons and anti-mirror neurons in the SNN field. Compared with traditional affective empathy computational models, our model is more biologically plausible, and it provides a new perspective for achieving artificial affective empathy, which has special potential for the social robots field in the future.

5.
Front Neurosci ; 16: 920292, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669492

RESUMO

[This corrects the article DOI: 10.3389/fnins.2022.753900.].

6.
Front Neurosci ; 16: 753900, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495023

RESUMO

Artificial Intelligence (AI) systems are increasingly applied to complex tasks that involve interaction with multiple agents. Such interaction-based systems can lead to safety risks. Due to limited perception and prior knowledge, agents acting in the real world may unconsciously hold false beliefs and strategies about their environment, leading to safety risks in their future decisions. For humans, we can usually rely on the high-level theory of mind (ToM) capability to perceive the mental states of others, identify risk-inducing errors, and offer our timely help to keep others away from dangerous situations. Inspired by the biological information processing mechanism of ToM, we propose a brain-inspired theory of mind spiking neural network (ToM-SNN) model to enable agents to perceive such risk-inducing errors inside others' mental states and make decisions to help others when necessary. The ToM-SNN model incorporates the multiple brain areas coordination mechanisms and biologically realistic spiking neural networks (SNNs) trained with Reward-modulated Spike-Timing-Dependent Plasticity (R-STDP). To verify the effectiveness of the ToM-SNN model, we conducted various experiments in the gridworld environments with random agents' starting positions and random blocking walls. Experimental results demonstrate that the agent with the ToM-SNN model selects rescue behavior to help others avoid safety risks based on self-experience and prior knowledge. To the best of our knowledge, this study provides a new perspective to explore how agents help others avoid potential risks based on bio-inspired ToM mechanisms and may contribute more inspiration toward better research on safety risks.

7.
Front Neurorobot ; 14: 60, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32982714

RESUMO

Theory of mind (ToM) is the ability to attribute mental states to oneself and others, and to understand that others have beliefs that are different from one's own. Although functional neuroimaging techniques have been widely used to establish the neural correlates implicated in ToM, the specific mechanisms are still not clear. We make our efforts to integrate and adopt existing biological findings of ToM, bridging the gap through computational modeling, to build a brain-inspired computational model for ToM. We propose a Brain-inspired Model of Theory of Mind (Brain-ToM model), and the model is applied to a humanoid robot to challenge the false belief tasks, two classical tasks designed to understand the mechanisms of ToM from Cognitive Psychology. With this model, the robot can learn to understand object permanence and visual access from self-experience, then uses these learned experience to reason about other's belief. We computationally validated that the self-experience, maturation of correlate brain areas (e.g., calculation capability) and their connections (e.g., inhibitory control) are essential for ToM, and they have shown their influences on the performance of the participant robot in false-belief task. The theoretic modeling and experimental validations indicate that the model is biologically plausible, and computationally feasible as a foundation for robot theory of mind.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA