Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
1.
Materials (Basel) ; 17(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38591581

RESUMO

Fused silica was polished to a high quality by a CO2 laser beam with a rapid scanning rate. The rapid scanning rate produced a line laser heat source, resulting in a "polishing line" during the polishing process. The Taguchi method was used to evaluate the comprehensive influence of polishing process parameters on the polishing qualities. Four factors, namely the length of laser reciprocating scanning (A), laser beam scanning speed (B), feed speed (C), and defocusing amount (D), were investigated in this study. The optimal process parameter combination (A1B1C1D1) was obtained. The surface roughness of fused silica was reduced from Ra = 0.157 µm to 0.005 µm. Through analysis of variance (ANOVA), it was found that laser beam scanning speed (B) had a significant influence on the polishing quality. The interaction of the two factors plays a decisive role in the determination of the best process parameters, and the influence of other multi-factor interaction can be ignored; the interaction between A × B is the largest, with a contribution of 42.69%.

2.
Water Res ; 256: 121574, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38593606

RESUMO

The ecological risk of combined pollution from microplastics (MPs) and associated contaminants usually depends on their interactions and environmental behavior, which was also disturbed by varying surface modifications of MPs. In this study, the significance of surface functionalization and protein-corona on the cotransport of nanoplastics (NPs; 100 nm) and the related additive bisphenol AF (BPAF) was examined in simulated unsaturated hyporheic zone (quartz sand; 250-425 µm). The electronegative bovine serum albumin (BSA) and electropositive trypsin were chosen as representative proteins, while pristine (PNPs), amino-modified (ANPs), and carboxyl-modified NPs (CNPs) were representative NPs with different charges. The presence of BPAF inhibited the mobility of PNPs/CNPs, but enhanced the release of ANPs in hyporheic zone, which was mainly related to their hydrophobicity changes and electrostatic interactions. Meanwhile, the NPs with high mobility and strong affinity to BPAF became effective carriers, promoting the cotransport of BPAF by 16.4 %-26.4 %. The formation of protein-coronas altered the mobility of NPs alone and their cotransport with BPAF, exhibiting a coupling effect with functional groups. BSA-corona promoted the transport of PNPs/CNPs, but this promoting effect was weakened by the presence of BPAF via increasing particle aggregation and hydrophobicity. Inversely, trypsin-corona aggravated the deposition of PNPs/CNPs, but competition deposition sites and increased energy barrier caused by coexisting BPAF reversed this effect, facilitating the cotransport of trypsin-PNPs/CNPs in hyporheic zone. However, BPAF and protein-coronas synergistically promoted the mobility of ANPs, owing to competition deposition sites and decreased electrostatic attraction. Although all of the NPs with two protein-coronas reduced dissolved BPAF in the effluents via providing deposition sites, the cotransport of total BPAF was improved by the NPs with high mobility (BSA-PNPs/CNPs) or high affinity to BPAF (BSA/trypsin-ANPs). However, the trypsin-PNPs/CNPs inhibited the transport of BPAF due to their weak mobility and adsorption with BPAF. The results provide new insights into the role of varying surface modifications on NPs in the vertical cotransport of NPs and associated contaminants in unsaturated hyporheic zone.


Assuntos
Plásticos , Plásticos/química , Coroa de Proteína/química , Microplásticos/química , Poluentes Químicos da Água/química , Fenóis/química , Soroalbumina Bovina/química , Compostos Benzidrílicos/química , Nanopartículas/química
3.
J Hazard Mater ; 470: 134179, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38565011

RESUMO

Microplastics (MPs) and fluoxetine are ubiquitous emerging pollutants in aquatic environments that may interact with each other due to the carrier effects of MPs, posing unpredictable risks to non-target organisms. However, limited studies have focused on the carrier effects of MPs in the aquatic food chain. This study evaluated the influences of polystyrene MPs on the trophic transfer and biotoxicity of fluoxetine in a simple food chain composed of brine shrimp (Artemia nauplii) and zebrafish (Danio rerio). The finding reveals that carrier effects of MPs enhanced the accumulation of waterborne fluoxetine in brine shrimp, but suppressed that in zebrafish due to the distinct retention times. The accumulated fluoxetine in shrimp was further transferred to fish through the food chain, which was alleviated by MPs due to their cleaning effects. In addition, the specific neurotransmission biotoxicity in fish induced by fluoxetine was mitigated by MPs, whilst the oxidative damage, apoptosis, and immune responses in zebrafish were reversely enhanced by MPs due to the stimulating effect. These findings highlight the alleviating effects of MPs on the trophic transfer and specific biotoxicity of fluoxetine in the food chain, providing new insights into the carrier effects of MPs in aquatic environments in the context of increasing global MP pollution.


Assuntos
Artemia , Fluoxetina , Cadeia Alimentar , Microplásticos , Poliestirenos , Poluentes Químicos da Água , Peixe-Zebra , Animais , Fluoxetina/toxicidade , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Poliestirenos/toxicidade , Artemia/efeitos dos fármacos
4.
J Hazard Mater ; 470: 134147, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38565017

RESUMO

Microplastics and antibiotics are prevalent and emerging pollutants in aquatic ecosystems, but their interactions in aquatic food chains remain largely unexplored. This study investigated the impact of polypropylene microplastics (PP-MPs) on oxytetracycline (OTC) trophic transfer from the shrimp (Neocaridina denticulate) to crucian carp (Carassius auratus) by metagenomic sequencing. The carrier effects of PP-MPs promoted OTC bioaccumulation and trophic transfer, which exacerbated enterocyte vacuolation and hepatocyte eosinophilic necrosis. PP-MPs enhanced the inhibitory effect of OTC on intestinal lysozyme activities and complement C3 levels in shrimp and fish, and hepatic immunoglobulin M levels in fish (p < 0.05). Co-exposure of MPs and OTC markedly increased the abundance of Actinobacteria in shrimp and Firmicutes in fish, which caused disturbances in carbohydrate, amino acid, and energy metabolism. Moreover, OTC exacerbated the enrichment of antibiotic resistance genes (ARGs) in aquatic animals, and PP-MPs significantly increased the diversity and abundance of ARGs and facilitated the trophic transfer of teta and tetm. Our findings disclosed the impacts of PP-MPs on the mechanism of antibiotic toxicity in aquatic food chains and emphasized the importance of gut microbiota for ARGs trophic transfer, which contributed to a deeper understanding of potential risks posed by complex pollutants on aquatic ecosystems.


Assuntos
Antibacterianos , Cadeia Alimentar , Microbioma Gastrointestinal , Microplásticos , Oxitetraciclina , Poluentes Químicos da Água , Animais , Oxitetraciclina/toxicidade , Microplásticos/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Antibacterianos/toxicidade , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Polipropilenos , Carpa Dourada/genética , Carpa Dourada/metabolismo , Penaeidae/microbiologia , Penaeidae/efeitos dos fármacos , Muramidase/metabolismo
5.
Aquat Toxicol ; 268: 106852, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38310667

RESUMO

Benzophenone-3 (BP-3) is a commonly used ultraviolet absorber that has the potential to accumulate in organisms, leading to toxicity. Benzophenone-8 (BP-8) is one of the major metabolites of BP-3. In this study, zebrafish were exposed to different concentrations of BP-3 and BP-8 (1 µg/L, 30 µg/L, and 300 µg/L) to investigate their accumulation and toxic effects in various tissues, including zebrafish brain, gut, and liver. The analysis focused on neurotoxicity, oxidative damage, inflammation, and gene expressions. The results showed that both BP-3 and BP-8 accumulated in the tissues, with the highest concentration observed in the gut, followed by the liver and brain. BP-8 exhibited a stronger ability to accumulate. In the brain, exposure to 1 µg/L of BP-3 and BP-8 promoted cortisol production, while higher exposures (30 µg/L and 300 µg/L) inhibited acetylcholinesterase activity and suppressed cortisol production. In the gut, both BP-3 and BP-8 exposures disrupted oxidative stress, inflammatory immunity, and apoptosis functions. In the liver, BP-3 and BP-8 affected hepatic metabolism, oxidative stress, apoptosis, and inflammatory immunity. Comparing gene expression in the brain, gut, and liver, it was found that BP-3 and BP-8 had a lower effect on gene expression in the brain, while the effect on the gut and liver was significantly higher. BP-8 generally had a higher effect than BP-3, which aligns with the observed accumulation pattern. These findings provide valuable insights for the risk assessment of BP-3 and BP-8 in the aquatic environment.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Acetilcolinesterase/metabolismo , Hidrocortisona , Poluentes Químicos da Água/toxicidade , Benzofenonas/toxicidade
6.
Adv Healthc Mater ; 13(15): e2400049, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38416676

RESUMO

Wound healing and infection remain significant challenges due to the ineffectiveness against multidrug-resistant (MDR) bacteria and the complex oxidative wound microenvironments. To address these issues, thymoquinone-reinforced injectable and thermosensitive TQ@PEG-PAF-Cur hydrogels with dual functions of microenvironment reshaping and photodynamic therapy are developed. The hydrogel comprises natural compound thymoquinone (TQ) and poly (ethylene glycol)-block-poly (alanine-co-phenyl alanine) copolymers (PEG-PAF) conjugated with natural photosensitizer curcumin (Cur). The incorporation of TQ and Cur reduces the sol-to-gel transition temperature of TQ@PEG-PAF-Cur to 30°C, compared to PEG-PAF hydrogel (37°C), due to the formation of strong hydrogen bonding, matching the wound microenvironment temperature. Under blue light excitation, TQ@PEG-PAF-Cur generates significant amounts of reactive oxygen species such as H2O2, 1O2, and ·OH, exhibiting rapid and efficient bactericidal capacities against methicillin-resistant Staphylococcus aureus and broad spectrum ß-lactamases Escherichia coli via photodynamic therapy (PDT). Additionally, Cur effectively inhibits the expressions of proinflammatory cytokines in skin tissue-forming cells. As a result, the composite hydrogel can rapidly transform into a gel to cover the wound, reshape the wound microenvironment, and accelerate wound healing in vivo. This collaborative antibacterial strategy provides valuable insights to guide the development of multifunctional materials for efficient wound healing.


Assuntos
Curcumina , Farmacorresistência Bacteriana Múltipla , Hidrogéis , Staphylococcus aureus Resistente à Meticilina , Cicatrização , Hidrogéis/química , Hidrogéis/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Curcumina/farmacologia , Curcumina/química , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Fotoquimioterapia/métodos , Antibacterianos/farmacologia , Antibacterianos/química , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Camundongos , Escherichia coli/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Espécies Reativas de Oxigênio/metabolismo , Fototerapia/métodos , Humanos
7.
Heliyon ; 10(3): e24990, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38352756

RESUMO

Background: Osteosarcoma (OS), the commonest primary malignant bone tumor, is mainly seen in children and teenagers. LINC00960, a newly discovered long intergenic non-protein coding RNA, has been shown to be important in certain cancers. The objective of this study was to assess LINC00960's prognostic and therapeutic value and analyze its mechanism of action in osteosarcoma. Methods: With the transcriptome information of 85 osteosarcomas from the TARGET database, the Cox regression analyses, K-M curve, and ROC curve, were conducted for survival and prognostic analysis. The functional analysis was conducted using GO, KEGG, GSEA, and GSVA. The ESTIMATE, ssGSEA, MCP-counter, ImmuCellAI algorithms, and immune checkpoint correlation analysis were performed for immune-related analysis. The single-cell RNA sequencing data of 6 osteosarcoma patients was obtained from the Gene Expression Omnibus database. The Tumor Immune Dysfunction and Exclusion algorithm and the "pRRophetic" R package were performed to predict the response to immunotherapy and chemotherapy. Results: LINC00960 overexpression is associated with osteosarcoma metastasis and poor prognosis. Based on the LINC00960 expression, the nomogram prediction model was created, which showed good accuracy and precision to predict the overall survival of osteosarcoma. Single-cell and immune-related analysis showed that LINC00960 is mainly highly expressed in the tumor-exhausted CD8 T cells in osteosarcoma. In osteosarcoma, the expression of LIC00960 was favorably connected with immune checkpoint-related genes and negatively correlated with immune infiltration. TIDE analysis indicated that low LINC00960 expression patients might have a better response to immunotherapy. Drug sensitivity analysis showed that high LINC00960 expression patients might have better responses to Bleomycin and Doxorubicin. Conclusion: LINC00960 has the potential to be a novel biomarker for predicting overall survival in osteosarcoma patients and to guide more individualized treatment and clinical decision-making.

8.
Eco Environ Health ; 3(1): 21-29, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38162869

RESUMO

The presence of trace organic pollutants in the effluent of wastewater treatment plants (WWTPs) poses considerable risks to aquatic organisms and human health. A large-scale survey of 302 trace organic pollutants in the effluent of 46 Chinese WWTPs was conducted to gain an improved understanding of their occurrence and ecological risks. The survey data showed that 216 compounds in 11 chemical classes had been detected in effluents. The sum concentrations of the trace contaminants in effluent ranged from 1,392 ng/L to 35,453 ng/L, with the maximum concentration of perfluoroalkyl substances (PFASs) recorded as the highest (30,573 ng/L), which was markedly less than the reported 185,000 ng/L for the 38 American WWTPs. The concentration of bisphenol analogs (BPs) was up to 4,422 ng/L, significantly higher than those reported in France, Germany, Japan, Korea, and the U.S. PFASs and BPs were the major pollutants, accounting for 59% of the total pollution. Additionally, a total of 119 contaminants were found to have ecological risks (RQ > 0.01). Among these, 23 contaminants (RQ > 1.0) warrant higher attention and should be prioritized for removal. This study lists valuable information for controlling contaminants with higher priority in WWTP effluent in China.

9.
Adv Sci (Weinh) ; 11(12): e2306964, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38234236

RESUMO

The effective management of osteomyelitis remains extremely challenging due to the difficulty associated with treating bone defects, the high probability of recurrence, the requirement of secondary surgery or multiple surgeries, and the difficulty in eradicating infections caused by methicillin-resistant Staphylococcus aureus (MRSA). Hence, smart biodegradable biomaterials that provide effective and precise local anti-infection effects and can promote the repair of bone defects are actively being developed. Here, a novel nano-micro composite is fabricated by combining calcium phosphate (CaP) nanosheets with drug-loaded GelMA microspheres via microfluidic technology. The microspheres are covalently linked with vancomycin (Van) through an oligonucleotide (oligo) linker using an EDC/NHS carboxyl activator. Accordingly, a smart nano-micro composite called "CaP@MS-Oligo-Van" is synthesized. The porous CaP@MS-Oligo-Van composites can target and capture bacteria. They can also release Van in response to the presence of bacterial micrococcal nuclease and Ca2+, exerting additional antibacterial effects and inhibiting the inflammatory response. Finally, the released CaP nanosheets can promote bone tissue repair. Overall, the findings show that a rapid, targeted drug release system based on CaP@MS-Oligo-Van can effectively target bone tissue infections. Hence, this agent holds potential in the clinical treatment of osteomyelitis caused by MRSA.


Assuntos
Fosfatos de Cálcio , Staphylococcus aureus Resistente à Meticilina , Osteomielite , Infecções Estafilocócicas , Humanos , Infecções Estafilocócicas/tratamento farmacológico , Vancomicina/farmacologia , Vancomicina/uso terapêutico , Antibacterianos/farmacologia , Osteomielite/tratamento farmacológico , Osteomielite/microbiologia
10.
Water Res ; 249: 120946, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043355

RESUMO

Microplastics (MPs) can vertically transport in the aquatic environment due to their aging and biofouling, forming distinct plastisphere in different water layers. However, even though MPs have been regarded as hotspots for antibiotic resistance genes (ARGs), little is known about the propagation and transfer of ARGs in plastisphere in waters, especially in the vertical profile. Therefore, this study investigated the dynamic responses and evolution of ARGs in different plastisphere distributed vertically in an urbanized river. The biofilm biomass in the polylactic acid (PLA) plastisphere was relatively higher than that in the polyethylene terephthalate (PET), showing depth-decay variations. The ARGs abundance in plastisphere were much higher than that in the surrounding waters, especially for the PLA. In the vertical profiles, the ARGs abundance in the PET plastisphere increased with water depths, while the highest abundance of ARGs in the PLA mostly appeared at intermediate waters. In the temporal dynamic, the ARGs abundance in plastisphere increased and then decreased, which may be dominated by the MP types at the initial periods. After long-term exposure, the influences of water depths seemed to be strengthened, especially in the PET plastisphere. Compared with surface waters, the microbiota attached in plastisphere in deep waters showed high species richness, strong diversity, and complex interactions, which was basically consistent with the changes of nutrient contents in different water layers. These vertical variations in microbiota and nutrients (e.g., nitrogen) may be responsible for the propagation of ARGs in plastisphere in deep waters. The host bacteria for ARGs in plastisphere was also developed as water depth increased, leading to an enrichment of ARGs in deep waters. In addition, the abundance of ARGs in plastisphere in bottom waters was positively correlated with the mobile genetic elements (MGEs) of intI1 and tnpA05, indicative of a frequent horizontal gene transfer of ARGs. Overall, water depth played a critical role in the propagation of ARGs in plastisphere, which should not be ignored in a long time series. This study provides new insights into the dynamic evolution of ARGs propagation in plastisphere under increasing global MPs pollution, especially in the vertical profile.


Assuntos
Genes Bacterianos , Plásticos , Antibacterianos/farmacologia , Rios , Resistência Microbiana a Medicamentos/genética , Microplásticos , Poliésteres , Água
11.
J Hazard Mater ; 463: 132951, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-37951174

RESUMO

The concerns on the carriers of microplastics (MPs) on co-existing pollutants in aquatic environments are sharply rising in recent years. However, little is known about their interactions on the colonization of microbiota, especially for the spread of pathogens and antibiotic resistance genes (ARGs). Therefore, this study aimed to investigate the influences on the propagation of ARGs in sediments by the co-exposure of different MPs and sulfamethoxazole (SMX). The results showed that the presence of MPs significantly enhanced the contents of total organic carbon, while having no effects on the removal of SMX in sediments. Exposure to SMX and MPs obviously activated the microbial carbon utilization capacities based on the BIOLOG method. The propagation of ARGs in sediments was activated by SMX, which was further promoted by the presence of polylactic acid (PLA) MPs, but significantly lowered by the co-exposed polyethylene (PE) MPs. This apparent difference may be attributed to the distinct influence on the antibiotic efflux pumps of two MPs. Moreover, the propagation of ARGs may be also dominated by microbial carbon metabolism in sediments, especially through regulating the carbon sources of carboxylic acids, carbohydrates, and amino acids. This study provides new insights into the carrier effects of MPs in sediments.


Assuntos
Antibacterianos , Sulfametoxazol , Antibacterianos/farmacologia , Microplásticos/toxicidade , Plásticos , Carbono , Resistência Microbiana a Medicamentos/genética , Polietileno , Genes Bacterianos
12.
Front Public Health ; 11: 1297245, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38111483

RESUMO

Background: It remains unclear how antioxidant intake affects all-cause mortality in osteoarthritis (OA) patients. In this prospective cohort study, we aim to explore the association of the Composite Dietary Antioxidant Index (CDAI) with all-cause mortality and investigate the interaction of physical activity (PA) and CDAI on all-cause mortality in OA populations. Methods: A total of 3,197 adults with OA in the National Health and Nutrition Examination Survey (NHANES) from 2001 to 2018 were included in this study. Death outcomes were obtained from National Death Index (NDI) records. Multivariable Cox regression analyses with cubic spines were applied to estimate the association of CDAI with all-cause mortality. The interaction between CDAI and PA on all-cause mortality was further assessed in stratified analysis and interaction tests. Results: The hazard ratios for all-cause mortality were 0.95 (0.77-1.17) for Q2, 0.75 (0.59-0.97) for Q3, and 0.71 (0.55-0.92) for Q4 (P for trend <0.001), compared with the lowest quartile of CDAI. A negative linear association was found between CDAI and all-cause mortality. In the stratified analyses, CDAI was negatively associated with all-cause mortality in the insufficient PA group. While in the low and sufficient PA group, there were nonlinear relationships of CDAI with all-cause mortality. Conclusion: A negative linear relationship was observed between CDAI and all-cause mortality in OA patients, and this association was significantly modified by PA. Higher intake of dietary antioxidants might be the interventional objective to reduce the risk of all-cause mortality in the US OA population.


Assuntos
Antioxidantes , Osteoartrite , Adulto , Humanos , Inquéritos Nutricionais , Estudos Prospectivos , Exercício Físico
13.
Colloids Surf B Biointerfaces ; 231: 113570, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37812862

RESUMO

Chronic and infectious wounds are major public health issues with financial and clinical manifestations. Developing a multitasking extracellular matrix mimicking scaffold can bring revolution saving millions of lives. Many bioactive agents are offering therapeutic promises in managing infectious wounds but require a suitable delivery system to ensure not only their bioavailability possible on the wound site but also control their burst release hence making them either useless or highly cytotoxic. In this study, we reported the dual bioactive agent-loaded electrospinning nanofibers potentially useable against infectious wounds. The zinc oxide nanoparticles (ZnO NPs) and vascular endothelial growth factors (VEGF), highly relevant bioactive agents, were chosen to be co-delivered to the wound site through the core-shell electrospun membrane. The physicochemical properties of prepared membranes were characterized through various physicochemical tools. Our result demonstrated that PLGA polymer can be electrospun into smooth fibers. X-ray diffraction analysis revealed the successful loading of ZnO NPs which was further confirmed by TEM. The fabricated membrane exhibited a suitable mechanical behavior. Moreover, the incorporation of ZnO NPs has turned the nanofibers into an effective antibacterial scaffold. Besides, the membranes were also evaluated for their cytotoxicity. The in vitro cell culturing on various membranes revealed that cell maintained their maximum viability on all the membranes. The potential of in vivo wound healing was further demonstrated through animal experiments. Our results show that membranes could not only influence early wound contraction, but also better tissue organization demonstrated through histopathological evaluation. We successfully demonstrated the rich vascularization network by synching the actions of ZnO NPs and VEGF. In conclusion, the fabricated membranes possess suitable physicochemical properties and promising biological activity and hence should be further exploited for in vivo wound healing potential.


Assuntos
Nanofibras , Óxido de Zinco , Animais , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Nanofibras/química , Fator A de Crescimento do Endotélio Vascular/farmacologia , Cicatrização , Bandagens , Antibacterianos/química
14.
Aquat Toxicol ; 262: 106655, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37598522

RESUMO

Hexafluoropropylene oxide dimer acid (HFPO-DA) and hexafluoropropylene oxide trimer acid (HFPO-TA) are considered as alternatives to perfluorooctanoic acid (PFOA). In this study, zebrafish were exposed to different concentrations of PFOA, HFPO-DA, and HFPO-TA (5 µg/L and 500 µg/L), and the toxic effects on oxidative damage, inflammation, and cell apoptosis in the gut were compared. Additionally, changes in gut metabolome profiles and microbial community structure were analyzed. The results revealed that exposures to HFPO-DA and HFPO-TA led to lower levels of oxidative damage compared to PFOA exposure. However, all three treatments had comparable effects on inflammation and apoptosis. The main biological pathways affected by all three exposures were lipid metabolism, nucleotide metabolism, amino acid metabolism, and environmental information processing. The effects on metabolome profiles were much higher for HFPO-DA and HFPO-TA compared to PFOA at a concentration of 5 µg/L. At a concentration of 500 µg/L, HFPO-DA and HFPO-TA showed similar effects to PFOA. This study also examined the Pearson correlations between gut microbiota and the toxic effects mentioned above. The abundance of specific apoptosis-related genera differed among the three target chemicals, suggesting they may act differently in inducing apoptosis. The correlations between HFPO-DA and HFPO-TA were mostly similar, which helps explain the similar effects observed in their respective treatment groups on metabolic profiles. Overall, this study indicates that HFPO-DA and HFPO-TA may not be safe alternatives to PFOA and provides valuable insights into their toxic effects and risk assessment in water environments.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Poluentes Químicos da Água/toxicidade , Inflamação
15.
Environ Sci Technol ; 57(23): 8506-8513, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37267077

RESUMO

The widespread use of plastic products leads to the ubiquity of microplastics in daily life, while the release of microplastics from long-used contact lenses has not been reported due to the limitations of conventional detection methods. Here, we established a new and rapid method to capture and count microplastics by using a high-content screening system. This method can simultaneously measure the diameter, area, and shape of each plastic particle, and the reliability and applicability of this method were verified with commercial microplastics. It is estimated that 90,698 particles of microplastics could be released from a pair of contact lenses during a year of wearing. The microplastics in the leachates were confirmed to be released from the contact lenses by scanning electron microscopy and Fourier transform infrared spectroscopy fingerprint analysis. Our study reveals an undiscovered pathway of microplastic direct exposure to humans, highlighting the urgent need to assess the potential health risks caused by eye exposure to microplastics.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Plásticos/análise , Luz Solar , Reprodutibilidade dos Testes , Poluentes Químicos da Água/análise , Monitoramento Ambiental
16.
Aquat Toxicol ; 258: 106515, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37011548

RESUMO

Benzophenone-3 (BP-3) as one of frequently used organic UV filters has been considered an emerging pollutant due to its toxicities. Benzophenone-8 (BP-8) is one of the main metabolites of BP-3 in organisms. Current reports show that BP-8 may be more toxic than BP-3. However, difference of their toxicities on embryonic development has rarely been reported. In this study, zebrafish embryos were chosen as the target organism to explore the developmental toxicities of BP-3 and BP-8. Non-targeted metabolomic analysis was performed to compare their modes of action. Results showed that BP-8 exposures led to higher bioaccumulation and lower hatching rate of zebrafish larvae than BP-3. Both BP-8 and BP-3 exposures caused behavioral abnormalities of zebrafish larvae, but no significant difference was found between them. At the metabolome level, 1 µg/L BP-3 and 1 µg/L BP-8 exposures altered neuroactive ligand-receptor interaction pathway and FoxO signaling pathway, respectively, which might be involved in the abnormal behaviors in zebrafish larvae. For higher exposure groups (30 and 300 µg/L), both BP-3 and BP-8 exposures changed metabolism of cofactors and vitamins of zebrafish larvae. Exposure of BP-3 altered the metabolism by pantothenate and CoA biosynthesis pathway, while BP-8 exposure changed riboflavin metabolism and folate biosynthesis. The above results indicated different modes of action of BP-3 and BP-8 in zebrafish embryonic development. This study sheds new light to biological hazards of BP-3 due to its metabolism in aquatic organisms.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Protetores Solares/toxicidade , Poluentes Químicos da Água/toxicidade , Benzofenonas/toxicidade
17.
Aquat Toxicol ; 257: 106467, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36870174

RESUMO

The ubiquitous pharmaceuticals in aquatic environments have attracted huge attention due to their significant risks to humans and ecosystems. However, even though the knowledge of the negative effects induced by the parent pharmaceuticals is quite extensive, little is known about their metabolites for a long time. This study provides systematical knowledge about the potential toxicity of metabolite norfluoxetine and its parent fluoxetine on zebrafish (Danio rerio) at the early life stage. The results showed that the metabolite norfluoxetine had similar acute toxicity in fish with the parent fluoxetine. For the altered fish development, there was no significant difference in most cases between the two pharmaceuticals. Compared to the control, the metabolite markedly inhibited the locomotor behavior under light-to-dark transitions, which was comparable to the parent. Norfluoxetine could easily accumulate but hardly eliminate from fish, relative to fluoxetine. In addition, the accumulated fluoxetine in zebrafish may rapidly metabolize to norfluoxetine and then be eliminated through different metabolic pathways. The functional genes related to serotonergic process (5-ht1aa, 5-ht2c, slc6a4b, and vmat), early growth (egr4), and circadian rhythm (per2) were downregulated by both the norfluoxetine and fluoxetine, indicative of the same mode-of-action of norfluoxetine with its parent in these functions. Meanwhile, the alterations caused by norfluoxetine were more pronounced than that of fluoxetine in the genes of 5-ht2c, slc6a4b, vmat, and per2. The molecular docking also confirmed that norfluoxetine could bind with serotonin transporter protein in the same as fluoxetine with a lower binding free energy. Overall, the metabolite norfluoxetine could induce similar and even more toxic effects on zebrafish with the same mode of action. The different and binding energy of the metabolite norfluoxetine and its parent fluoxetine on zebrafish may be responsible for the differentiated effects. It highlights the risks of the metabolite norfluoxetine in the aquatic environment could not be ignored.


Assuntos
Fluoxetina , Poluentes Químicos da Água , Animais , Humanos , Fatores de Transcrição de Resposta de Crescimento Precoce/metabolismo , Ecossistema , Fluoxetina/metabolismo , Simulação de Acoplamento Molecular , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo
18.
J Environ Manage ; 335: 117546, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36848802

RESUMO

Antibiotics are widely used in medical care, livestock production, and aquaculture. However, antibiotic pollution has attracted increasing global concerns due to their ecological risks after entering into environmental ecosystem via animal excretion, effulent from industrial and domestic sewage treatment facilities. In this study, 30 antibiotics were investigated in soils and irrigation rivers using ultra-performance liquid chromatography-triple quadrupole tandem mass spectrometer. This study evaluated the occurrence, source apportionment, and ecological risks of these target compounds in soils and irrigation rivers (i.e., sediments and water) of farmland system by using principal component analysis-multivariate linear regression (PCA-MLR) and risk quotients (RQ). The concentration range of antibiotics in soils, sediments, and water was 0.38-689.58 ng/g, 81.99-658.00 ng/g, and 134.45-1547.06 ng/L, respectively. In soils, the most abundant antibiotics were quinolones and antifungals with an average concentration of 30.00 ng/g and 7.69 ng/g, respectively, contributing to 40% of total antibiotics. Macrolides were the most frequently detected antibiotics in soils with an average concentration of 4.94 ng/g. In irrigation rivers, quinolones and tetracyclines, the most abundant antibiotics, accounted for 78% and 65% of antibiotics in water and sediments, respectively. Higher antibiotic contamination of irrigation water was primarily distributed in highly populated urban areas, while increasing antibiotic contamination of sediments and soils was particularly observed in rural areas. PCA-MLR analysis indicated that antibiotic contamination in soils was mainly ascribed to the irrigation of sewage-receiving water body and manure application of livestock and poultry farming, which cumulatively contributed to 76% of antibiotics. According to RQ assessment, quinolones in irrigation rivers posed high risk to algae and daphnia, contributing 85% and 72% to the mixture risk, respectively. In soils, macrolides, quinolones and sulfonamides were responsible for more than 90% to the mixture risk of antibiotics. Ultimately, these findings can improve our fundamental knowledge on contamination characteristics and source pathways towards risk management of antibiotics in farmland system.


Assuntos
Quinolonas , Poluentes Químicos da Água , Animais , Antibacterianos/análise , Fazendas , Esgotos/análise , Ecossistema , Quinolonas/análise , Solo , Medição de Risco , Rios , Água/análise , Macrolídeos/análise , Monitoramento Ambiental , China , Poluentes Químicos da Água/análise
19.
Ecotoxicol Environ Saf ; 253: 114682, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36842276

RESUMO

Due to relatively lower toxicity, bisphenol S (BPS) has become an alternative to previously used bisphenol A. Nevertheless, the occurrence of BPS and its ecological impact have recently attracted increasing attentions because the toxicology effect of BPS with life cycle or multigenerational exposure on aquatic organisms remains questionable. Herein, Daphnia magna (D. magna) multigenerational bioassays spanning four generations (F0-F3) and single-generation recovery (F1 and F3) in clean water were used to investigate the ecotoxicology of variable chronic BPS exposure. For both assays, four kinds of life-history traits (i.e., survival, reproduction, growth and ecological behavior) were examined for each generation. After an 18-day exposure under concentration of 200 µg/L, the survival rate of D. magna was less than 15 % for the F2 generation, whereas all died for the F3 generation. With continuous exposure of four generations of D. magna at environmentally relevant concentrations of BPS (2 µg/L), inhibition of growth and development, prolonged sexual maturity, decreased offspring production and decreased swimming activity were observed for the F3 generation. In particular, it is difficult for D. magna to return to its normal level through a single-generation recovery in clean water in terms of reproductive function, ecological behavior and population health. Hence, multi-generational exposure to low concentrations of BPS can have adverse effects on population health of aquatic organisms with short breeding cycles, highlighting the necessity to assess the ecotoxicology of chronic BPS exposure for public health.


Assuntos
Daphnia , Exposição Ambiental , Poluentes Químicos da Água , Daphnia/efeitos dos fármacos , Características de História de Vida , Análise de Sobrevida , Reprodução/efeitos dos fármacos , Natação , Comportamento Animal/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Testes de Toxicidade Crônica
20.
Sci Total Environ ; 861: 160567, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36455738

RESUMO

Perfluorooctanoic acid (PFOA) is widely distributed in nature, particularly in aquatic environments. Its bioaccumulation and toxicity in aquatic organisms can be affected by both the chemical status of PFOA in water and the physiology of the organism. However, research on the patterns of these effects is scarce. In this study, we investigated the influence of aqueous pH (pH 6, acidic; pH 7.5, neutral; pH 9, basic) and fish sex on PFOA uptake, clearance, and biochemical effects in crucian carp (C. auratus) using flow-through exposure. In the 17-d kinetic experiment, PFOA bioaccumulation adhered to a uniform first-order model in which PFOA uptake rates from water to blood and liver in acidic conditions were faster than those in other conditions, indicating possible acidic pH influence on PFOA uptake. PFOA clearance rates in these compartments of males were slower than in females, which was attributed to the notably stronger expression of Oat2 (organic anion transporter 2, responsible for reabsorption) in the kidneys of males. Similar responses were observed for peroxisome proliferation-related biomarkers at different pH levels and in different sexes. These biochemical responses were driven by the internal concentrations of PFOA. The inhibition acetylcholinesterase activity in the fish brain was closely linked to changes in P-glycoprotein content, demonstrating a protective relationship. Collectively, an aqueous pH lower than 7.5 might affect the uptake of PFOA by fish. The clearance discrepancies between the sexes highlight the importance of anion carriers for ionizable organic compounds in aquatic organisms.


Assuntos
Carpas , Fluorocarbonos , Poluentes Químicos da Água , Masculino , Animais , Feminino , Acetilcolinesterase , Caprilatos/toxicidade , Caprilatos/metabolismo , Fluorocarbonos/toxicidade , Fluorocarbonos/metabolismo , Carpas/metabolismo , Água , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA