Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
World J Clin Oncol ; 15(6): 765-782, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38946828

RESUMO

BACKGROUND: Lung cancer bone metastasis (LCBM) is a disease with a poor prognosis, high risk and large patient population. Although considerable scientific output has accumulated on LCBM, problems have emerged, such as confusing research structures. AIM: To organize the research frontiers and body of knowledge of the studies on LCBM from the last 22 years according to their basic research and translation, clinical treatment, and clinical diagnosis to provide a reference for the development of new LCBM clinical and basic research. METHODS: We used tools, including R, VOSviewer and CiteSpace software, to measure and visualize the keywords and other metrics of 1903 articles from the Web of Science Core Collection. We also performed enrichment and protein-protein interaction analyses of gene expression datasets from LCBM cases worldwide. RESULTS: Research on LCBM has received extensive attention from scholars worldwide over the last 20 years. Targeted therapies and immunotherapies have evolved into the mainstream basic and clinical research directions. The basic aspects of drug resistance mechanisms and parathyroid hormone-related protein may provide new ideas for mechanistic study and improvements in LCBM prognosis. The produced molecular map showed that ribosomes and focal adhesion are possible pathways that promote LCBM occurrence. CONCLUSION: Novel therapies for LCBM face animal testing and drug resistance issues. Future focus should centre on advancing clinical therapies and researching drug resistance mechanisms and ribosome-related pathways.

2.
Drug Metab Dispos ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997155

RESUMO

P2Y12 receptor inhibitors are commonly used in clinical antiplatelet therapy, typically alongside other medications. Vicagrel, a promising P2Y12 receptor inhibitor, has submitted a new drug marketing application to the U.S. FDA. Its primary metabolites and some metabolic pathways are identical to those of clopidogrel. The aim of this study was to investigate the effects of the thiol methyltransferase inhibitor ({plus minus})-2,3-dichloro-α-methylbenzylamine (DCMB) on the metabolism and pharmacokinetics of vicagrel. In vitro incubation with human and rat liver microsomes revealed that DCMB significantly inhibited the methylation of vicagrel's thiol metabolite M15-1. Rats were orally administered 6 mg/kg [14C]vicagrel (100 µCi/kg) 1 h after peritoneal injection with or without DCMB (80 mg/kg). Compared to the control group, the plasma of DCMB-pretreated rats exhibited C max decrease and T max delay for all vicagrel-related substances, the methylation product of the thiol metabolite (M9-2) and the derivatization product of the active thiol metabolite (MP-M15-2). However, no significant changes in AUC or t 1/2 were observed. DCMB had negligible effect on the total radiological recovery of vicagrel within 72 h, although the rate of vicagrel excretion slowed down within 48 h. DCMB had a negligible impact on the metabolic pathway of vicagrel. Overall, the present study found that DCMB did not significantly affect the total exposure, metabolic pathways, metabolite profiles, or total excretion rates of vicagrel-related metabolites in rats, but led to C max decrease, T max delay, and slower excretion rate within 48 h. Significance Statement This study used LC-MS/MS combined with radiolabeling technology to investigate the effects of the TMT inhibitor DCMB on the absorption, metabolism and excretion of vicagrel in rats. This work helps to better understand the in vivo metabolism of active thiol metabolites of P2Y12 inhibitors such as clopidogrel and vicagrel, etc.

3.
J Control Release ; 373: 240-251, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38977135

RESUMO

Brain-targeted drug delivery poses a great challenge due to the blood-brain barrier (BBB). In a previous study, we have developed a peptide-modified stealth liposome (SP-sLip) to enhance BBB penetration via the adsorption of apolipoproteins in plasma. SP is an 11-amino acid peptide derived from 25 to 35 of the Amyloid ß peptide (Aß1-42), which is a nature ligand of apolipoproteins. Although freshly prepared SP-sLip exhibited efficient brain targeting performance, it occured self-aggregation and instability in storage. In this study, we developed a D-peptide ligand according to the reverse sequence of SP with D-amino acids, known as DSP, to improve the stability in storage. Notably, DSP exhibited a reduced tendency for self-aggregation and improved stability in comparison to the SP peptide. Furthermore, compared to SP-sLip, DSP-modified sLip (DSP-sLip) demonstrated enhanced stability (>2 weeks), prolonged blood circulation (AUC increased 44.4%), reduced liver and spleen accumulation (reduced by 2.23 times and 1.86 times) with comparable brain-targeting efficiency. Similar to SP-sLip, DSP-sLip selectively adsorbed apolipoprotein A1, E, and J in the blood to form functionalized protein corona, thus crossing BBB via apolipoprotein receptor-mediated transcytosis. These findings underscored the importance of ligand stability in the in vitro and in vivo performance of brain-targeted liposomes, therefore paving the way for the design and optimization of efficient and stable nanocarriers.

4.
J Control Release ; 370: 256-276, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679163

RESUMO

As an essential branch of targeted drug delivery, oral targeted delivery is attracting growing attention in recent years. In addition to site-specific delivery for the treatment of locoregional diseases in the gastrointestinal tract (GIT), oral targeted delivery to remote sites beyond the GIT emerges as a cutting-edge research topic. This review aims to provide an overview of the fundamental concepts and most recent advances in this field. Owing to the physiological barriers existing in the GIT, carrier systems should be transported across the enteric epithelia to target remote sites. Recently, pioneer investigations have validated the transport of intact micro- or nanocarriers across gastrointestinal barriers and subsequently to various distal organs and tissues. The microfold (M) cell pathway is the leading mechanism underlying the oral absorption of particulates, but the contribution of the transcellular and paracellular pathways should not be neglected either. In addition to well-acknowledged physicochemical and biological factors, the formation of a protein corona may also influence the biological fate of carrier systems. Although in an early stage of conceptualization, oral targeted delivery to remote diseases has demonstrated promising potential for the treatment of inflammation, tumors, and diseases inflicting the lymphatic and mononuclear phagocytosis systems.


Assuntos
Sistemas de Liberação de Medicamentos , Trato Gastrointestinal , Humanos , Administração Oral , Animais , Trato Gastrointestinal/metabolismo , Portadores de Fármacos/química , Preparações Farmacêuticas/administração & dosagem
5.
Clin Transl Oncol ; 26(6): 1519-1531, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38206516

RESUMO

BACKGROUND: Although it has been shown that cyclin dependent kinase inhibitor 2A (CDKN2A) plays a significant role in a number of malignancies, its clinicopathological value and function in small cell lung cancer (SCLC) is unclear and warrants additional research. METHODS: The clinical significance of CDKN2A expression in SCLC was examined by multiple methods, including comprehensive integration of mRNA level by high throughput data, Kaplan-Meier survival analysis for prognostic value, and validation of its protein expression using in-house immunohistochemistry. RESULTS: The expression of CDKN2A mRNA in 357 cases of SCLC was evidently higher than that in the control group (n = 525) combing the data from 20 research centers worldwide. The standardized mean difference (SMD) was 3.07, and the area under the curve (AUC) of summary receiver operating characteristic curve (sROC) was 0.97 for the overexpression of CDKN2A. ACC, COAD, KICH, KIRC, PCPG, PRAD, UCEC, UVM patients with higher CDKN2A expression had considerably worse overall survival rates than those with lower CDKN2A expression with the hazard ratio (HR) > 1. CONCLUSION: CDKN2A upregulation extensively enhances the carcinogenesis and progression of SCLC.


Assuntos
Biomarcadores Tumorais , Inibidor p16 de Quinase Dependente de Ciclina , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/mortalidade , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Prognóstico , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Feminino , Masculino , Estimativa de Kaplan-Meier , Curva ROC , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pessoa de Meia-Idade , Taxa de Sobrevida , Estudos Prospectivos , Idoso , Estudos de Casos e Controles , Relevância Clínica
6.
Genomics ; 115(6): 110744, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37972907

RESUMO

BACKGROUND: Bariatric surgery (BS) is an effective approach in treating obesity and ameliorating T2DM with obesity. Our previous studies demonstrated that duodenal-jejunal bypass (DJB) altered long non-coding RNAs (lncRNAs) in the gastrointestinal system, which is associated with modulation of lipid metabolism, and glycemic control through entero-pancreatic axis and gut-brain axis. The adipose non-coding RNA expression profile and the underlying competing endogenous RNA (ceRNA) regulatory network pattern post DJB needs further research and investigation. RESULTS: In this study, we compared the lncRNAs, circular RNAs (circRNAs) and messenger RNAs (mRNAs) expression in adipose tissues between the sham group and the DJB group. 2219 differentially expressed mRNAs (DEmRNAs), 722 differential expression of lncRNAs (DElncRNAs) and 425 differential expression of circRNAs (DEcircRNAs) were identified. GO terms and KEGG pathways analysis of the DEmRNAs implied that the dysregulated adipose mRNAs were associated with lipid, amino acid metabolism, insulin resistance, and extra cellular matrix (ECM)-related pathways. Moreover, via analyzing ceRNA regulatory networks of DElncRNAs and DEcircRNAs, 31 hub DE mRNAs, especially Mpp7, 9330159F19Rik, Trhde. Trdn, Sorbs2, were found on these pathways. CONCLUSIONS: The role of DJB in adipose tends to remodel ECM and improve the energy metabolism through the ceRNA regulatory network.


Assuntos
MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Endógeno Competitivo , RNA Circular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Obesidade , Redes Reguladoras de Genes
8.
Exp Biol Med (Maywood) ; 248(18): 1566-1578, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37873701

RESUMO

Myocardial ischemia-reperfusion (I/R), an important complication of reperfusion therapy for myocardial infarction, is characterized by hyperactive oxidative stress and inflammatory response. Leonurine (4-guanidino-n-butyl syringate, SCM-198), an alkaloid extracted from Herbaleonuri, was previously found to be highly cardioprotective both in vitro and in vivo. Our current study aimed to investigate the effect of SCM-198 preconditioning on myocardial I/R injury in vitro and in vivo, respectively, as well as to decipher the mechanism involved. Rats were pretreated with SCM-198 before subjected to 45 min of myocardial ischemia, which was followed by 24 h of reperfusion. Primary neonatal rat cardiac ventricular myocytes (NRCMs) were exposed to hypoxia (95% N2 + 5% CO2) for 12 h, and then to 12 h reoxygenation so as to mimic I/R. The enzymatic measurements demonstrated that SCM-198 reduced the release of infarction-related enzymes, and the hemodynamic and echocardiography measurements showed that SCM-198 restored cardiac functions, which suggested that SCM-198 could significantly reduce infarct size, maintaining cardiomyocyte morphology, and that SCM-198 pretreatment could significantly reduce cardiomyocytes apoptosis. Moreover, we demonstrated that SCM-198 could exert a cardioprotective effect by reducing reactive oxygen species (ROS) level and Akt phosphorylation while reducing the phosphorylation of p38 and JNK. In addition, the upregulation of p-Akt, Bcl-2/Bax induced by SCM-198 treatment were blocked by PI3K inhibitor LY294002, and the total protein level of Akt was not affected by SCM-198 pretreatment. Our experimental results indicated that SCM-198 could have a cardioprotective effect on I/R injury, which confirmed the utility of SCM-198 preconditioning as a strategy to prevent I/R injury.


Assuntos
Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Ratos , Animais , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Ratos Sprague-Dawley , Miócitos Cardíacos/metabolismo , Isquemia Miocárdica/metabolismo , Apoptose
9.
Front Microbiol ; 14: 1232180, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37799607

RESUMO

Background: Severe liver diseases, such as liver fibrosis, cirrhosis, and liver cancer, are mainly caused by hepatitis B virus (HBV). This study investigated the differences between gut microbiota in HBeAg-positive and negative groups of patients with chronic hepatitis B (CHB) and investigated the effect of tenofovir alafenamide (TAF) on gut microbiota. Methods: This prospective study included patients with CHB not taking nucleoside antivirals (No-NAs group, n = 95) and those taking TAF (TAF group, n = 60). We divided CHB patients into two groups according to the HBeAg status of the subjects on the day of data collection. Phase 1 are HBeAg-negative patients and phase 2 are HBeAg-positive patients. We investigated the improvement of clinical symptoms by TAF, as well as differences in gut microbiota between different groups by 16S rRNA high-throughput sequencing. Results: Gut microbiota demonstrated significant differences between patients with HBeAg-positive and -negative CHB. Both the No-NAs and TAF Phase 2 subgroups demonstrated significantly increased microbiota richness and diversity, showing greater heterogeneity. Additionally, the Phase 2 subgroup exhibited a low abundance of pathways associated with glucose metabolism and amino acid metabolism. The TAF group demonstrated a significantly decreased HBV load, alanine aminotransferase, and aspartate aminotransferase and a significant increase in prealbumin compared with the No-NAs group. No significant difference was found in uric acid, creatinine, blood calcium, inorganic phosphorus, eGFR, and ß2-microglobulin concentrations between the two groups. Additionally, the urea level in the TAF group was significantly lower than that in the No-NAs group, but with no significant effect on other indicators such as eGFR and ß2-microglobulin. Conclusion: This study revealed significant differences in gut microbiota composition and function between patients with HBeAg-positive and -negative CHB.

10.
Adv Drug Deliv Rev ; 202: 115114, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37827336

RESUMO

Safe and efficient medical therapy for brain diseases is still an unmet clinical need due to various barriers represented by the blood-brain barrier. Well-designed brain targeted nanocarriers are potential solutions for enhanced brain drug delivery; however, the complicated in vivo process attenuates performance of nanocarriers, which severely hampers clinical translation. The formation of protein corona (PC) is inevitable for nanocarriers circulation and transport in biofluids, acting as an important factor to regulate in vivo performance of nanocarriers. In this review, the reported strategies have been retrospected for better understanding current situation in developing brain targeted nanocarriers. The interplay between brain targeted nanocarriers and plasma proteins is emphasized to comprehend how the nanocarriers adsorb proteins by certain synthetic identity, and following regulations on in vivo performance of nanocarriers. More importantly, the mainstream methods to promote efficiency of nanocarriers by regulating PC, defined as in vitro functionalization and in vivo functionalization strategies, are also discussed. Finally, viewpoints about future development of brain targeted nanocarriers according to the understanding on nanocarriers-PC interaction are proposed.


Assuntos
Nanopartículas , Coroa de Proteína , Humanos , Portadores de Fármacos , Coroa de Proteína/metabolismo , Nanopartículas/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Encéfalo/metabolismo
11.
PeerJ ; 11: e15598, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601247

RESUMO

Background: Worldwide, lung squamous cell carcinoma (LUSC) has wreaked havoc on humanity. Matrix metallopeptidase 12 (MMP12) plays an essential role in a variety of cancers. This study aimed to reveal the expression, clinical significance, and potential molecular mechanisms of MMP12 in LUSC. Methods: There were 2,738 messenger RNA (mRNA) samples from several multicenter databases used to detect MMP12 expression in LUSC, and 125 tissue samples were validated by immunohistochemistry (IHC) experiments. Receiver operator characteristic (ROC) curves, Kaplan-Meier curves, and univariate and multivariate Cox regression analyses were used to assess the clinical value of MMP12 in LUSC. The potential molecular mechanisms of MMP12 were explored by gene enrichment analysis and immune correlation analysis. Furthermore, single-cell sequencing was used to determine the distribution of MMP12 in multiple tumor microenvironment cells. Results: MMP12 was significantly overexpressed at the mRNA level (p < 0.05, SMD = 3.13, 95% CI [2.51-3.75]), which was verified at the protein level (p < 0.001) by internal IHC experiments. MMP12 expression could be used to differentiate LUSC samples from normal samples, and overexpression of MMP12 itself implied a worse clinical prognosis and higher levels of immune cell infiltration in LUSC patients. MMP12 was involved in cancer development and progression through two immune-related signaling pathways. The high expression of MMP12 in LUSC might act as an antigen-presenting cell-associated tumor neoantigen and activate the body's immune response. Conclusions: MMP12 expression is upregulated in LUSC and high expression of MMP12 serves as a risk factor for LUSC patients. MMP12 may be involved in cancer development by participating in immune-related signaling pathways and elevating the level of immune cell infiltration.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Carcinoma de Células Escamosas/genética , Pulmão , Neoplasias Pulmonares/diagnóstico , Metaloproteinase 12 da Matriz/genética , Prognóstico , Microambiente Tumoral/genética
12.
ACS Nano ; 17(14): 14014-14031, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37428140

RESUMO

Metabolic therapy targeting the metabolic addictions driven by gain-of-function mutations in KRAS is promising in fighting cancer through selective killing of malignant cells without hurting healthy cells. However, metabolic compensation and heterogeneity make current metabolic therapies ineffective. Here, we proposed a biomimetic "Nutri-hijacker" with "Trojan horse" design to induce synthetic lethality in KRAS-mutated (mtKRAS) malignant cells by hitchhiking and reprogramming the metabolic addictions. Nutri-hijacker consisted of the biguanide-modified nanoparticulate albumin that impaired glycolysis and a flavonoid that restrained glutaminolysis after the macropinocytosis of Nutri-hijacker by mtKRAS malignant cells. Nutri-hijacker suppressed the proliferation and spread of mtKRAS malignant cells while lowering tumor fibrosis and immunosuppression. Nutri-hijacker significantly extended the lifespan of pancreatic ductal adenocarcinoma (PDAC)-bearing mice when combined with the hydroxychloroquine-based therapies that failed in clinical trials. Collectively, our findings demonstrated that Nutri-hijacker is a strong KRAS mutation-customized inhibitor and the synthetic lethality based on mtKRAS-driven metabolic addictions might be a promising strategy against PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/genética , Biomimética , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/metabolismo , Mutação , Neoplasias Pancreáticas
13.
Adv Sci (Weinh) ; 10(20): e2301777, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37150860

RESUMO

Liposomes have received tremendous attention as a class of versatile pharmaceutical vehicles of great potential over the past several decades. However, the application of liposomes encounters major challenges due to the knowledge gaps in their in vivo delivery process. Immunoglobulin M (IgM) displays both pervasiveness and complexity in regulating the biological functions as well as eliciting adverse effects of liposomes. Understanding, mitigating, and exploiting the duality of IgM are prerequisites for achieving various biomedical applications of liposomes. In this review, the intricate relationship between liposomes and their biological environments has been summarized, with an emphasis on the regulatory effects of IgM on in vivo performance of liposomes. Corresponding solutions have also been discussed to evade IgM-mediated opsonization for safe and efficient drug delivery.


Assuntos
Lipossomos , Polietilenoglicóis , Polietilenoglicóis/farmacologia , Sistemas de Liberação de Medicamentos , Imunoglobulina M
14.
Adv Sci (Weinh) ; 10(16): e2206623, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37017569

RESUMO

The underlying mechanisms that determine gene expression and chromatin accessibility in retinogenesis are poorly understood. Herein, single-cell RNA sequencing and single-cell assay for transposase-accessible chromatin sequencing are performed on human embryonic eye samples obtained 9-26 weeks after conception to explore the heterogeneity of retinal progenitor cells (RPCs) and neurogenic RPCs. The differentiation trajectory from RPCs to 7 major types of retinal cells are verified. Subsequently, diverse lineage-determining transcription factors are identified and their gene regulatory networks are refined at the transcriptomic and epigenomic levels. Treatment of retinospheres, with the inhibitor of RE1 silencing transcription factor, X5050, induces more neurogenesis with the regular arrangement, and a decrease in Müller glial cells. The signatures of major retinal cells and their correlation with pathogenic genes associated with multiple ocular diseases, including uveitis and age-related macular degeneration are also described. A framework for the integrated exploration of single-cell developmental dynamics of the human primary retina is provided.


Assuntos
Epigenômica , Transcriptoma , Humanos , Transcriptoma/genética , Retina/metabolismo , Neurogênese , Cromatina/genética
15.
Cancer Biother Radiopharm ; 38(10): 684-707, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34619053

RESUMO

Background: To date, the clinical management of advanced hepatocellular carcinoma (HCC) patients remains challenging and the mechanisms of E2F transcription factor 1 (E2F1) underlying HCC are obscure. Materials and Methods: Our study integrated datasets mined from several public databases to comprehensively understand the deregulated expression status of E2F1. Tissue microarrays and immunohistochemistry staining was used to validate E2F1 expression level. The prognostic value of E2F1 was assessed. In-depth subgroup analyses were implemented to compare the differentially expressed levels of E2F1 in HCC patients with various tumor stages. Functional enrichments were used to address the predominant targets of E2F1 and shedding light on their potential roles in HCC. Results: We confirmed the elevated expression of E2F1 in HCC. Subgroup analyses indicated that elevated E2F1 level was independent of various stages in HCC. E2F1 possessed moderate discriminatory capability in differentiating HCC patients from non-HCC controls. Elevated E2F1 correlated with Asian race, tumor classification, neoplasm histologic grade, eastern cancer oncology group, and plasma AFP levels. Furthermore, high E2F1 correlated with poor survival condition and pooled HR signified E2F1 as a risk factor for HCC. Enrichment analysis of differentially expressed genes, coexpressed genes, and putative targets of E2F1 emphasized the importance of cell cycle pathway, where CCNE1 and CCNA2 served as hub genes. Conclusions: We confirmed the upregulation of E2F1 and explored the prognostic value of E2F1 in HCC patients. Two putative targeted genes (CCNE1 and CCNA2) of E2F1 were identified for their potential roles in regulating cell cycle and promote antiapoptotic activity in HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Ciclo Celular , Fator de Transcrição E2F1/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , Prognóstico
16.
Comb Chem High Throughput Screen ; 26(2): 347-361, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35593363

RESUMO

BACKGROUND: The clinical value of pyroptosis-related genes (PRGs) in lung adenocarcinoma (LUAD) remains obscure. OBJECTIVE: The study attempts to explore PRGs in LUAD, which will enable an understanding of LUAD from the perspective of PRGs. METHODS: Lung adenocarcinoma patients were diagnosed using pathology, and their clinical information was collected from several public databases. A PRGs prognostic signature (PPS) for LUAD patients was established based on a multivariate Cox regression analysis. The differential expression of PRGs was identified using standardized mean differences in 6,958 samples. The area under the curve (AUC) was used to evaluate the predictive effects of the PPS to determine the survival rate of LUAD patients. Decision curve analysis was utilized to assess the clinical significance of the PPS in LUAD. RESULTS: The PPS consists of five PRGs, namely CASP3, CASP9, GSDMB, NLRP1, and TNF. The prognostic effect of the PPS is evident in all the predicted one-, three-, and five-year survival rates (AUCs ≥ 0.58). The PPS represents an independent risk factor for the prognosis of LUAD patients (hazard ratio > 1; 95% confidence interval excluding 1). The PPS risk score can predict the prognosis of LUAD patients more accurately than PRGs of the PPS and multiple clinical parameters, such as age, tumor stage, and clinical stage. The decision curve analysis revealed that the nomogram based on the PPS and clinical parameters might result in better clinical decisions. CONCLUSION: The PPS makes it feasible to distinguish LUAD from non-LUAD. Thus, the underlying significance of the PPS in distinguishing LUAD from non-LUAD is promising.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Prognóstico , Piroptose/genética , Adenocarcinoma de Pulmão/diagnóstico , Adenocarcinoma de Pulmão/genética , Relevância Clínica , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética
17.
Acta Pharmacol Sin ; 44(3): 680-692, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36114272

RESUMO

The growth of solid tumors depends on tumor vascularization and the endothelial cells (ECs) that line the lumen of blood vessels. ECs generate a large fraction of ATP through glycolysis, and elevation of their glycolytic activity is associated with angiogenic behavior in solid tumors. 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) positively regulates glycolysis via fructose-2/6-bisphosphate, the product of its kinase activity. Partial inhibition of glycolysis in tumor ECs by targeting PFKFB3 normalizes the otherwise abnormal tumor vessels, thereby reducing metastasis and improving the outcome of chemotherapy. Although a limited number of tool compounds exist, orally available PFKFB3 inhibitors are unavailable. In this study we conducted a high-throughput screening campaign against the kinase activity of PFKFB3, involving 250,240 chemical compounds. A total of 507 initial hits showing >50% inhibition at 20 µM were identified, 66 of them plus 1 analog from a similarity search consistently displayed low IC50 values (<10 µM). In vitro experiments yielded 22 nontoxic hits that suppressed the tube formation of primary human umbilical vein ECs at 10 µM. Of them, 15 exhibited binding affinity to PFKFB3 in surface plasmon resonance assays, including 3 (WNN0403-E003, WNN1352-H007 and WNN1542-F004) that passed the pan-assay interference compounds screening without warning flags. This study provides potential leads to the development of new PFKFB3 inhibitors.


Assuntos
Ensaios de Triagem em Larga Escala , Neoplasias , Fosfofrutoquinase-2 , Humanos , Glicólise , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neoplasias/metabolismo , Neovascularização Patológica , Fosfofrutoquinase-2/antagonistas & inibidores , Fosfofrutoquinase-2/metabolismo
18.
Front Genet ; 13: 1066636, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531232

RESUMO

Although multiple studies have shown that loss of heterozygosity (LOH) at the human leukocyte antigen (HLA) locus is one of the mechanisms of immune escape, the effect of HLA LOH on the immunotherapy response of patients is still unclear. Based on the data of 425 Chinese lung cancer patients, the genomic characteristics with different HLA LOH statuses were analyzed. The driver genes mutation frequency, oncogenic signaling pathways mutation frequency, tumor mutational burden (TMB) and chromosomal instability (CIN) score in the HLA LOH high group was significantly higher than in the HLA LOH negative group. Transcriptome analyses revealed that pre-existing immunologically active tumor microenvironment (TME) was associated with HLA LOH negative patients. Non-small cell lung cancer (NSCLC) patients, especially for lung squamous cell carcinomas (LUSC), with HLA LOH negative have a longer survival period than those with HLA LOH. In addition, the combination of HLA LOH with TMB or programmed cell death-Ligand 1 (PD-L1) expression can further distinguish responders from non-responders. Furthermore, a comprehensive predictive model including HLA LOH status, TMB, PD-L1 expression and CD8+ T cells was constructed and exhibited a higher predictive value, which may improve clinical decision-making.

19.
World J Surg Oncol ; 20(1): 359, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369089

RESUMO

BACKGROUND: The molecular mechanism of laryngeal squamous cell carcinoma (LSCC) is not completely clear, which leads to poor prognosis and treatment difficulties for LSCC patients. To date, no study has reported the exact expression level of zinc finger protein 71 (ZNF71) and its molecular mechanism in LSCC. METHODS: In-house immunohistochemistry (IHC) staining (33 LSCC samples and 29 non-LSCC samples) was utilized in analyzing the protein expression level of ZNF71 in LSCC. Gene chips and high-throughput sequencing data collected from multiple public resources (313 LSCC samples and 192 non-LSCC samples) were utilized in analyzing the exact mRNA expression level of ZNF71 in LSCC. Single-cell RNA sequencing (scRNA-seq) data was used to explore the expression status of ZNF71 in different LSCC subpopulations. Enrichment analysis of ZNF71, its positively and differentially co-expressed genes (PDCEGs), and its downstream target genes was employed to detect the potential molecular mechanism of ZNF71 in LSCC. Moreover, we conducted correlation analysis between ZNF71 expression and immune infiltration. RESULTS: ZNF71 was downregulated at the protein level (area under the curve [AUC] = 0.93, p < 0.0001) and the mRNA level (AUC = 0.71, p = 0.023) in LSCC tissues. Patients with nodal metastasis had lower protein expression level of ZNF71 than patients without nodal metastasis (p < 0.05), and male LSCC patients had lower mRNA expression level of ZNF71 than female LSCC patients (p < 0.01). ZNF71 was absent in different LSCC subpopulations, including cancer cells, plasma cells, and tumor-infiltrated immune cells, based on scRNA-seq analysis. Enrichment analysis showed that ZNF71 and its PDCEGs may influence the progression of LSCC by regulating downstream target genes of ZNF71. These downstream target genes of ZNF71 were mainly enriched in tight junctions. Moreover, downregulation of ZNF71 may influence the development and even therapy of LSCC by reducing immune infiltration. CONCLUSION: Downregulation of ZNF71 may promote the progression of LSCC by reducing tight junctions and immune infiltration; this requires further study.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Laríngeas , Humanos , Masculino , Feminino , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Neoplasias Laríngeas/genética , Neoplasias Laríngeas/patologia , Regulação para Baixo , Imuno-Histoquímica , Carcinoma de Células Escamosas/patologia , RNA Mensageiro/genética , Mineração de Dados , Dedos de Zinco , Coloração e Rotulagem , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Prognóstico
20.
J Clin Invest ; 132(18)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36106640

RESUMO

Forkhead box O transcriptional factors, especially FoxO1 and FoxO3a, play critical roles in physiologic and pathologic immune responses. However, the function of FoxO4, another main member of the FoxO family, in lymphoid cells is still poorly understood. Here, we showed that loss of FoxO4 in T cells augmented IFN-γ production of Th1 cells in vitro. Correspondingly, conditional deletion of FoxO4 in CD4+ T cells enhanced T cell-specific responses to Listeria monocytogenes infection in vivo. Genome-wide occupancy and transcriptomic analyses identified Dkk3 (encoding the Dickkopf-3 protein) as a direct transcriptional target of FoxO4. Consistent with the FoxO4-DKK3 relationship, recombinant DKK3 protein restored normal levels of IFN-γ production in FoxO4-deficient Th1 cells through the downregulation of lymphoid enhancer-binding factor 1 (Lef1) expression. Together, our data suggest a potential FoxO4/DKK3 axis in Th1 cell differentiation, providing what we believe to be an important insight and supplement for FoxO family proteins in T lymphocyte biology and revealing a promising target for the treatment of immune-related diseases.


Assuntos
Anti-Infecciosos , Células Th1 , Antibacterianos , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Perfilação da Expressão Gênica , Células Th1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA