Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Neuroscience ; 561: 87-91, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39426708

RESUMO

The aim of this study was to investigate alterations in the resting-state brain functional network characteristics of lifelong premature ejaculation (PE) patients using surface-based degree centrality (DC), and to analyze the correlation between these alterations and clinical symptoms in PE patients. The study included individuals with lifelong PE (patient group, n = 36) and a control group matched by age and education level (control group, n = 22). Resting-state functional magnetic resonance imaging (fMRI) scans were performed on all participants. Surface-based degree centrality analysis was conducted and the differences between the two groups were compared using t-tests. Further, the DC values of brain regions showing significant differences were correlated with clinical symptoms. Compared to the control group, the patient group exhibited significantly reduced degree centrality (DC) values in the left precuneus and significantly increased DC values in the right supplementary motor area (SMA). Furthermore, intravaginal ejaculatory latency time (IELT) and Chinese Index of Premature Ejaculation (CIPE) values were positively correlated with left precuneus DC values and negatively correlated with right SMA DC values. Patients with primary lifelong ejaculation demonstrate abnormalities in key brain network nodes and their connections with relevant brain regions, which are strongly associate with clinical symptoms. These findings enhance our understanding of the neuronal pathological changes in PE patients.

2.
Commun Eng ; 3(1): 144, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39402280

RESUMO

The integration of fiber-optical wireless convergence with fifth generation new radio is crucial in building high-performance access networks. This approach not only provides high-transmission-rates but also ensures broad coverage, which is vital for future networks. Here we report fifth generation new radio fiber-wireless converged systems by injection locking multi-optical carrier into directly-modulated lasers. Data rates of 10 Gb/s, 20 Gb/s, and 40 Gb/s are achieved by direct modulation on directly-modulated lasers using 16-quadrature amplitude modulation-orthogonal frequency-division multiplexing signal. Through 25-km single-mode fiber, 1.5-km optical wireless, and 12-/22-/33-m millimeter-wave/sub-terahertz wireless integrated-media, 10-Gb/s/20-GHz, 20-Gb/s/60-GHz, and 40-Gb/s/100-GHz signals are transmitted with acceptably low bit error rates and error vector magnitudes, as well as distinct constellations. The successful transport of fifth generation new radio millimeter-wave and sub-terahertz signals at different carrier frequencies through fiber-wireless convergence demonstrates the potential of the system to meet the evolving requirement of next-generation communications.

3.
Commun Eng ; 3(1): 128, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251731

RESUMO

To address the growing demand from emerging applications, high transmission capacity is essential for both fibre backbones and last-mile communications. This can be achieved by integrating optical fibre with optical wireless technologies, facilitating the development of fibre-free-space optical communications. Here we report a bidirectional wavelength-division-multiplexing fibre-free-space optical communication employing polarisation multiplexing technique and tunable optical vestigial sideband filter. The transmission capacity is considerably increased by integrating the polarisation multiplexing technique with the wavelength-division-multiplexing scheme. The transmission performance is extensively enhanced by using a tunable optical vestigial sideband filter and vestigial sideband-four-level pulse amplitude modulation. Moreover, the optical wireless link is substantially extended through the operation of triplet lenses. Low bit error rates and clear vestigial sideband-four-level pulse amplitude modulation eye diagrams are attained with a high aggregate transmission capacity of 480 Gb/s for downstream/upstream transmission. This capability of bidirectional fibre-free-space optical communications holds substantial potential for enhancing advanced wired-wireless communications.

4.
Artigo em Inglês | MEDLINE | ID: mdl-39292982

RESUMO

BACKGROUND: Peptic ulcer disease (PUD) affects individuals aged ≥70 years globally, exerting a significant impact on their health and well-being. Understanding its epidemiological evolution and associated factors is crucial for guiding interventions and improving management. METHODS: This study utilized Global Burden of Disease Study data to examine the prevalence and temporal changes of PUD in individuals aged 70 years and older between 1990 and 2019. The analysis included assessing estimated annual percentage changes (EAPCs) to investigate temporal trends and regional variations. RESULTS: Over the past 30 years, the number of individuals aged 70 years and above suffering from PUD globally has increased from 1 065 730 cases in 1990 to 1 608 463 cases in 2019. Despite an increasing number of cases, the prevalence of PUD among the elderly has exhibited a steady decline, with an EAPC of -1.47 (95% confidence interval: -1.57 to -1.37) over this timeframe. In 2019, the prevalence rates of PUD among individuals aged 70-74, 75-79, 80-84, and 85 years and older were 313.36, 365.77, 388.45, and 352.51 per 100 000 population, respectively. South Asia, high-income North America, and Central Sub-Saharan Africa were the regions with the highest prevalence rates of PUD in 2019, with rates of 624.90, 575.48, and 474.80 per 100 000 population, respectively. At the national level, Ireland, Australia, Brazil, Brunei Darussalam, and Bangladesh have effectively managed the burden of PUD among the elderly, achieving the greatest reduction. Additionally, regions with higher levels of socioeconomic development tended to have relatively lower burdens of PUD among the elderly, and prevalence rates varied across different regions and age groups. CONCLUSION: Our study highlights the enduring burden of PUD among the global elderly population, emphasizing the significance of tailored interventions to address this pressing issue. This research underscores the critical need for targeted public health strategies aimed at improving outcomes specifically for older adults affected by PUD.

5.
Hum Brain Mapp ; 45(12): e26814, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39163575

RESUMO

Subjective cognitive decline (SCD) is a high-risk population in the preclinical stage of Alzheimer's disease (AD), and olfactory dysfunction is a risk factor for dementia progression. The present study aimed to explore the patterns of functional connectivity (FC) changes in the olfactory neural circuits during olfactory stimulation in SCD subjects. A total of 56 SCD subjects and 56 normal controls (NCs) were included. All subjects were assessed with a cognitive scale, an olfactory behavior test, and olfactory task-based functional magnetic resonance imaging scanning. The FC differences in olfactory neural circuits between the two groups were analyzed by the generalized psychophysiological interaction. Additionally, we calculated and compared the activation of brain regions within the olfactory neural circuits during odor stimulation, the volumetric differences in brain regions showing FC differences between groups, and the correlations between neuroimaging indicators and olfactory behavioral and cognitive scale scores. During odor stimulation, the FC between the bilateral primary olfactory cortex (bPOC) and the right hippocampus in the SCD group was significantly reduced; while the FC between the right hippocampus and the right frontal cortex was significantly increased in the SCD group. The bPOC of all subjects showed significant activation, but no significant difference in activation between groups was found. No significant differences were observed in the volume of the brain regions within the olfactory neural circuits or in olfactory behavior between groups. The volume of the bPOC and right frontal cortex was significantly positively correlated with olfactory identification, and the volume of the right frontal cortex and right hippocampus was significantly correlated with cognitive functions. Furthermore, a significant correlation between the activation of bPOC and the olfactory threshold was found in the whole cohort. These results suggested that while the structure of the olfactory neural circuits and olfactory behavior in SCD subjects remained stable, there were significant changes observed in the FC of the olfactory neural circuits (specifically, the POC-hippocampus-frontal cortex neural circuits) during odor stimulation. These findings highlight the potential of FC alterations as sensitive imaging markers for identifying high-risk individuals in the early stage of AD.


Assuntos
Disfunção Cognitiva , Lobo Frontal , Hipocampo , Imageamento por Ressonância Magnética , Córtex Olfatório , Humanos , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/etiologia , Córtex Olfatório/diagnóstico por imagem , Córtex Olfatório/fisiologia , Córtex Olfatório/fisiopatologia , Hipocampo/diagnóstico por imagem , Hipocampo/fisiopatologia , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/fisiopatologia , Percepção Olfatória/fisiologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Rede Nervosa/fisiologia , Conectoma , Odorantes
6.
Hum Brain Mapp ; 45(10): e26772, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38962966

RESUMO

Humans naturally integrate signals from the olfactory and intranasal trigeminal systems. A tight interplay has been demonstrated between these two systems, and yet the neural circuitry mediating olfactory-trigeminal (OT) integration remains poorly understood. Using functional magnetic resonance imaging (fMRI), combined with psychophysics, this study investigated the neural mechanisms underlying OT integration. Fifteen participants with normal olfactory function performed a localization task with air-puff stimuli, phenylethyl alcohol (PEA; rose odor), or a combination thereof while being scanned. The ability to localize PEA to either nostril was at chance. Yet, its presence significantly improved the localization accuracy of weak, but not strong, air-puffs, when both stimuli were delivered concurrently to the same nostril, but not when different nostrils received the two stimuli. This enhancement in localization accuracy, exemplifying the principles of spatial coincidence and inverse effectiveness in multisensory integration, was associated with multisensory integrative activity in the primary olfactory (POC), orbitofrontal (OFC), superior temporal (STC), inferior parietal (IPC) and cingulate cortices, and in the cerebellum. Multisensory enhancement in most of these regions correlated with behavioral multisensory enhancement, as did increases in connectivity between some of these regions. We interpret these findings as indicating that the POC is part of a distributed brain network mediating integration between the olfactory and trigeminal systems. PRACTITIONER POINTS: Psychophysical and neuroimaging study of olfactory-trigeminal (OT) integration. Behavior, cortical activity, and network connectivity show OT integration. OT integration obeys principles of inverse effectiveness and spatial coincidence. Behavioral and neural measures of OT integration are correlated.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Córtex Olfatório , Humanos , Masculino , Feminino , Adulto , Córtex Olfatório/fisiologia , Córtex Olfatório/diagnóstico por imagem , Adulto Jovem , Percepção Olfatória/fisiologia , Álcool Feniletílico , Psicofísica , Nervo Trigêmeo/fisiologia , Nervo Trigêmeo/diagnóstico por imagem , Odorantes
7.
Sci Total Environ ; 948: 174787, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39009151

RESUMO

In this study, a first wall-to-wall comparison between the National Wetlands Inventory (NWI) and the National Land Cover Database (NLCD) was conducted across the entire conterminous United States (CONUS) to evaluate U.S. wetland loss conditions. Annually, around 26 km2 of wetlands are lost to impervious surfaces across the CONUS. Spatially, wetland loss is not evenly distributed, with 90 % of losses occurring in only 9 % of the land area, forming hotspots around expanding urban regions such as Houston, Jacksonville, and Naples. Over the past few decades, Florida experienced the highest wetland loss (5.73 km2/year) among all states, while Houston had the most wetland loss (2.54 km2/year) among all metropolitan regions. Stepwise multiple regression models identified population growth and its associated demand for new housing as the major drivers for wetland loss. Wetland loss per population increase is the highest (>15 m2/person) in most metropolitan regions around the East Coast and Gulf of Mexico. Unfortunately, current wetland loss hotspots will likely suffer further losses in future decades due to projected population growth, with Houston, Cape Coral, and Miami metropolitan regions having the greatest projected wetland loss of 89.15 km2, 34.35 km2, and 28.20 km2, respectively. This study has identified wetland loss hotspots and their drivers across the U.S. that were not possible in previous sample-based studies. The findings are critical in wetland management and protection across the U.S.

8.
Neuroscience ; 557: 81-88, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39067683

RESUMO

Gray matter changes are thought to be closely related to cognitive decline in mild cognitive impairment (MCI) patients. The study aimed to explore cortical and subcortical structural alterations in MCI and their association with cognitive assessment. 24 MCI patients and 22 normal controls (NCs) were included. Voxel-based morphometry (VBM), vertex-based shape analysis and surface-based morphometry (SBM) analysis were applied to explore subcortical nuclei volume, shape and cortical morphology. Correlations between structural changes and cognition were explored using spearman correlation analysis. Support vector machine (SVM) classification evaluated MCI identification accuracy. MCI patients showed significant atrophy in the left thalamus, left hippocampus, left amygdala, right pallidum, right hippocampus, along with inward deformation in the left amygdala. SBM analysis revealed that MCI group exhibited shallower sulci depth in the left hemisphere and increased cortical gyrification index (GI) in the right frontal gyrus. Correlation analysis showed the positive correlation between right hippocampus volume and episodic memory, while negative correlation between the altered GI and memory performance in MCI group. SVM analysis demonstrated superior performance of sulci depth and GI derived from SBM in MCI identification. When combined with cortical and subcortical metrics, SVM achieved a peak accuracy of 89 % in distinguishing MCI from NC. The study reveals significant gray matter structural changes in MCI, suggesting their potential role in underlying functional differences and neural mechanisms behind memory impairment in MCI.


Assuntos
Disfunção Cognitiva , Substância Cinzenta , Imageamento por Ressonância Magnética , Humanos , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/patologia , Disfunção Cognitiva/fisiopatologia , Masculino , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Idoso , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Máquina de Vetores de Suporte , Atrofia/patologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Testes Neuropsicológicos , Encéfalo/patologia , Encéfalo/diagnóstico por imagem
9.
Asian J Androl ; 26(5): 510-516, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38722110

RESUMO

ABSTRACT: Ejaculation is regulated by the central nervous system. However, the central pathophysiology of primary intravaginal anejaculation (PIAJ) is unclear. The present study aimed to examine the changes in regional brain activity and functional connectivity underlying PIAJ. A total of 20 PIAJ patients and 16 healthy controls (HCs) were enrolled from September 2020 to September 2022 in the Department of Andrology, Nanjing Drum Tower Hospital (Nanjing, China). Magnetic resonance imaging data were acquired from all participants and then were preprocessed. The measures of fractional amplitude of low-frequency fluctuation (fALFF), regional homogeneity (ReHo), and functional connectivity (FC) were calculated and compared between the groups. PIAJ patients showed increased fALFF values in the left precuneus compared with HCs. Additionally, PIAJ patients showed increased ReHo values in the left precuneus, left postcentral gyrus, left superior occipital gyrus, left calcarine fissure, right precuneus, and right middle temporal gyrus, and decreased ReHo values in the left inferior parietal gyrus, compared with HCs. Finally, brain regions with altered fALFF and ReHo values in PIAJ patients showed increased FC with widespread cortical regions, which included the frontal, parietal, temporal, and occipital regions, compared with HCs. In conclusion, increased regional brain activity in the parietal, temporal, and occipital regions, and increased FC between these brain regions, may be associated with PIAJ occurrence.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Masculino , Feminino , Ejaculação/fisiologia , Mapeamento Encefálico/métodos , Disfunções Sexuais Fisiológicas/fisiopatologia , Disfunções Sexuais Fisiológicas/diagnóstico por imagem , Vagina/diagnóstico por imagem , Vagina/fisiopatologia , Disfunção Ejaculatória
10.
J Am Chem Soc ; 146(23): 15879-15886, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38813680

RESUMO

The integration of low-energy states into bottom-up engineered graphene nanoribbons (GNRs) is a robust strategy for realizing materials with tailored electronic band structure for nanoelectronics. Low-energy zero-modes (ZMs) can be introduced into nanographenes (NGs) by creating an imbalance between the two sublattices of graphene. This phenomenon is exemplified by the family of [n]triangulenes (n ∈ N). Here, we demonstrate the synthesis of [3]triangulene-GNRs, a regioregular one-dimensional (1D) chain of [3]triangulenes linked by five-membered rings. Hybridization between ZMs on adjacent [3]triangulenes leads to the emergence of a narrow band gap, Eg,exp ∼ 0.7 eV, and topological end states that are experimentally verified using scanning tunneling spectroscopy. Tight-binding and first-principles density functional theory calculations within the local density approximation corroborate our experimental observations. Our synthetic design takes advantage of a selective on-surface head-to-tail coupling of monomer building blocks enabling the regioselective synthesis of [3]triangulene-GNRs. Detailed ab initio theory provides insights into the mechanism of on-surface radical polymerization, revealing the pivotal role of Au-C bond formation/breakage in driving selectivity.

11.
Science ; 384(6698): 895-901, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38781380

RESUMO

The covalent interaction of N-heterocyclic carbenes (NHCs) with transition metal atoms gives rise to distinctive frontier molecular orbitals (FMOs). These emergent electronic states have spurred the widespread adoption of NHC ligands in chemical catalysis and functional materials. Although formation of carbene-metal complexes in self-assembled monolayers on surfaces has been explored, design and electronic structure characterization of extended low-dimensional NHC-metal lattices remains elusive. Here we demonstrate a modular approach to engineering one-dimensional (1D) metal-organic chains and two-dimensional (2D) Kagome lattices using the FMOs of NHC-Au-NHC junctions to create low-dimensional molecular networks exhibiting intrinsic metallicity. Scanning tunneling spectroscopy and first-principles density functional theory reveal the contribution of C-Au-C π-bonding states to dispersive bands that imbue 1D- and 2D-NHC lattices with exceptionally small work functions.

12.
BMC Urol ; 24(1): 76, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566091

RESUMO

BACKGROUND: To develop a risk model including clinical and radiological characteristics to predict false-positive The Prostate Imaging Reporting and Data System (PI-RADS) 5 lesions. METHODS: Data of 612 biopsy-naïve patients who had undergone multiparametric magnetic resonance imaging (mpMRI) before prostate biopsy were collected. Clinical variables and radiological variables on mpMRI were adopted. Lesions were divided into the training and validation cohort randomly. Stepwise multivariate logistic regression analysis with backward elimination was performed to screen out variables with significant difference. A diagnostic nomogram was developed in the training cohort and further validated in the validation cohort. Calibration curve and receiver operating characteristic (ROC) analysis were also performed. RESULTS: 296 PI-RADS 5 lesions in 294 patients were randomly divided into the training and validation cohort (208 : 88). 132 and 56 lesions were confirmed to be clinically significant prostate cancer in the training and validation cohort respectively. The diagnostic nomogram was developed based on prostate specific antigen density, the maximum diameter of lesion, zonality of lesion, apparent diffusion coefficient minimum value and apparent diffusion coefficient minimum value ratio. The C-index of the model was 0.821 in the training cohort and 0.871 in the validation cohort. The calibration curve showed good agreement between the estimation and observation in the two cohorts. When the optimal cutoff values of ROC were 0.288 in the validation cohort, the sensitivity, specificity, PPV, and NPV were 90.6%, 67.9%, 61.7%, and 92.7% in the validation cohort, potentially avoiding 9.7% unnecessary prostate biopsies. CONCLUSIONS: We developed and validated a diagnostic nomogram by including 5 factors. False positive PI-RADS 5 lesions could be distinguished from clinically significant ones, thus avoiding unnecessary prostate biopsy.


Assuntos
Imageamento por Ressonância Magnética Multiparamétrica , Neoplasias da Próstata , Humanos , Masculino , Biópsia Guiada por Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Nomogramas , Próstata/diagnóstico por imagem , Próstata/patologia , Antígeno Prostático Específico , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Estudos Retrospectivos , Distribuição Aleatória
13.
J Nucl Med ; 65(4): 555-559, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38485278

RESUMO

Prostate Imaging Reporting and Data System (PI-RADS) category 3 lesions remain a diagnostic challenge for detecting clinically significant prostate cancer (csPCa). This article evaluates the added value of 68Ga-labeled prostate-specific membrane antigen-11 (68Ga-PSMA) PET/MRI in classifying PI-RADS 3 lesions to avoid unnecessary biopsies. Methods: Sixty biopsy-naïve men with PI-RADS 3 lesions on multiparametric MRI were prospectively enrolled between February 2020 and October 2022. In all, 56 participants underwent 68Ga-PSMA PET/MRI and prostate systematic biopsy. 68Ga-PSMA PET/MRI was independently evaluated and reported by the 5-level PRIMARY score developed within the PRIMARY trial. Receiver-operating-characteristic curve analysis was used to estimate the diagnostic performance. Results: csPCa was detected in 8 of 56 patients (14.3%). The proportion of patients with csPCa and a PRIMARY score of 1, 2, 3, 4, and 5 was 0% (0/12), 0% (0/13), 6.3% (1/16), 38.5% (5/13), and 100% (2/2), respectively. The estimated area under the curve of the PRIMARY score was 0.91 (95% CI, 0.817-0.999). For a PRIMARY score of 4-5 versus a PRIMARY score of 1-3, the sensitivity, specificity, positive predictive value, and negative predictive value were 87.5%, 83.3%, 46.7%, and 97.5%, respectively. With a PRIMARY score of at least 4 to make a biopsy decision in men with PI-RADS 3 lesions, 40 of 48 patients (83.3%) could avoid unnecessary biopsies, at the expense of missing 1 of 8 (12.5%) csPCa cases. Conclusion: 68Ga-PSMA PET/MRI has great potential to classify patients with PI-RADS 3 lesions and help avoid unnecessary biopsies.


Assuntos
Isótopos de Gálio , Imageamento por Ressonância Magnética Multiparamétrica , Neoplasias da Próstata , Masculino , Humanos , Imageamento por Ressonância Magnética/métodos , Radioisótopos de Gálio , Neoplasias da Próstata/patologia , Estudos Prospectivos , Tomografia por Emissão de Pósitrons , Estudos Retrospectivos , Biópsia Guiada por Imagem/métodos
14.
Front Neurosci ; 18: 1309482, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435057

RESUMO

Alzheimer's disease (AD) is a prevalent form of dementia that affects an estimated 32 million individuals globally. Identifying early indicators is vital for screening at-risk populations and implementing timely interventions. At present, there is an urgent need for early and sensitive biomarkers to screen individuals at risk of AD. Among all sensory biomarkers, olfaction is currently one of the most promising indicators for AD. Olfactory dysfunction signifies a decline in the ability to detect, identify, or remember odors. Within the spectrum of AD, impairment in olfactory identification precedes detectable cognitive impairments, including mild cognitive impairment (MCI) and even the stage of subjective cognitive decline (SCD), by several years. Olfactory impairment is closely linked to the clinical symptoms and neuropathological biomarkers of AD, accompanied by significant structural and functional abnormalities in the brain. Olfactory behavior examination can subjectively evaluate the abilities of olfactory identification, threshold, and discrimination. Olfactory functional magnetic resonance imaging (fMRI) can provide a relatively objective assessment of olfactory capabilities, with the potential to become a promising tool for exploring the neural mechanisms of olfactory damage in AD. Here, we provide a timely review of recent literature on the characteristics, neuropathology, and examination of olfactory dysfunction in the AD continuum. We focus on the early changes in olfactory indicators detected by behavioral and fMRI assessments and discuss the potential of these techniques in MCI and preclinical AD. Despite the challenges and limitations of existing research, olfactory dysfunction has demonstrated its value in assessing neurodegenerative diseases and may serve as an early indicator of AD in the future.

15.
Hepatology ; 79(2): 289-306, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37540187

RESUMO

BACKGROUND AND AIMS: Molecular classification is a promising tool for prognosis prediction and optimizing precision therapy for HCC. Here, we aimed to develop a molecular classification of HCC based on the fatty acid degradation (FAD) pathway, fully characterize it, and evaluate its ability in guiding personalized therapy. APPROACH AND RESULTS: We performed RNA sequencing (RNA-seq), PCR-array, lipidomics, metabolomics, and proteomics analysis of 41 patients with HCC, in which 17 patients received anti-programmed cell death-1 (PD-1) therapy. Single-cell RNA sequencing (scRNA-seq) was performed to explore the tumor microenvironment. Nearly, 60 publicly available multiomics data sets were analyzed. The associations between FAD subtypes and response to sorafenib, transarterial chemoembolization (TACE), immune checkpoint inhibitor (ICI) were assessed in patient cohorts, patient-derived xenograft (PDX), and spontaneous mouse model ls. A novel molecular classification named F subtype (F1, F2, and F3) was identified based on the FAD pathway, distinguished by clinical, mutational, epigenetic, metabolic, and immunological characteristics. F1 subtypes exhibited high infiltration with immunosuppressive microenvironment. Subtype-specific therapeutic strategies were identified, in which F1 subtypes with the lowest FAD activities represent responders to compounds YM-155 and Alisertib, sorafenib, anti-PD1, anti-PD-L1, and atezolizumab plus bevacizumab (T + A) treatment, while F3 subtypes with the highest FAD activities are responders to TACE. F2 subtypes, the intermediate status between F1 and F3, are potential responders to T + A combinations. We provide preliminary evidence that the FAD subtypes can be diagnosed based on liquid biopsies. CONCLUSIONS: We identified 3 FAD subtypes with unique clinical and biological characteristics, which could optimize individual cancer patient therapy and help clinical decision-making.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Animais , Camundongos , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Sorafenibe/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Multiômica , Medicina de Precisão , Ácidos Graxos , Microambiente Tumoral
16.
Asian J Androl ; 25(6): 699-703, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37800899

RESUMO

Recent research has highlighted structural and functional abnormalities in the cerebral cortex of patients with premature ejaculation (PE). These anomalies could play a pivotal role in the physiological mechanisms underlying PE. This study leveraged functional magnetic resonance imaging (fMRI), a noninvasive technique, to explore these neural mechanisms. We conducted resting-state fMRI scans on 36 PE patients and 22 healthy controls (HC), and collected data on Premature Ejaculation Diagnostic Tool (PEDT) scores and intravaginal ejaculation latency time (IELT). Employing a surface-based regional homogeneity (ReHo) approach, we analyzed local neural synchronous spontaneous activity, diverging from previous studies that utilized a volume-based ReHo method. Areas with significant ReHo differences between PE and HC groups underwent surface-based functional connectivity (FC) analysis. Significant discrepancies in ReHo and FC across the cortical surface were observed in the PE cohort. Notably, PE patients exhibited decreased ReHo in the left triangular inferior frontal gyrus and enhanced ReHo in the right middle frontal gyrus. The latter showed heightened connectivity with the left lingual gyrus and the right orbital superior frontal gyrus. Furthermore, a correlation between ReHo and FC values with PEDT scores and IELT was found in the PE group. Our findings, derived from surface-based fMRI data, underscore specific brain regions linked to the neurobiological underpinnings of PE.


Assuntos
Ejaculação Precoce , Masculino , Humanos , Mapeamento Encefálico/métodos , Encéfalo , Córtex Cerebral , Imageamento por Ressonância Magnética/métodos
17.
Comput Biol Med ; 160: 106983, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37187133

RESUMO

Colonoscopy, as the golden standard for screening colon cancer and diseases, offers considerable benefits to patients. However, it also imposes challenges on diagnosis and potential surgery due to the narrow observation perspective and limited perception dimension. Dense depth estimation can overcome the above limitations and offer doctors straightforward 3D visual feedback. To this end, we propose a novel sparse-to-dense coarse-to-fine depth estimation solution for colonoscopic scenes based on the direct SLAM algorithm. The highlight of our solution is that we utilize the scattered 3D points obtained from SLAM to generate accurate and dense depth in full resolution. This is done by a deep learning (DL)-based depth completion network and a reconstruction system. The depth completion network effectively extracts texture, geometry, and structure features from sparse depth along with RGB data to recover the dense depth map. The reconstruction system further updates the dense depth map using a photometric error-based optimization and a mesh modeling approach to reconstruct a more accurate 3D model of colons with detailed surface texture. We show the effectiveness and accuracy of our depth estimation method on near photo-realistic challenging colon datasets. Experiments demonstrate that the strategy of sparse-to-dense coarse-to-fine can significantly improve the performance of depth estimation and smoothly fuse direct SLAM and DL-based depth estimation into a complete dense reconstruction system.


Assuntos
Colo , Colonoscopia , Humanos , Colo/diagnóstico por imagem , Algoritmos , Retroalimentação Sensorial
18.
Neurobiol Aging ; 127: 82-93, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37116409

RESUMO

Brain dynamics and the associations with spatial navigation in individuals with subjective cognitive decline (SCD) remain unknown. In this study, a hidden Markov model (HMM) was inferred from resting-state functional magnetic resonance imaging data in a cohort of 80 SCD and 77 normal control (NC) participants. By HMM, 12 states with distinct brain activity were identified. The SCD group showed increased fractional occupancy in the states with less activated ventral default mode, posterior salience, and visuospatial networks, while decreased fractional occupancy in the state with general network activation. The SCD group also showed decreased probabilities of transition into and out of the state with general network activation, suggesting an inability to dynamically upregulate and downregulate brain network activity. Significant correlations between brain dynamics and spatial navigation were observed. The combined features of spatial navigation and brain dynamics showed an area under the curve of 0.854 in distinguishing between SCD and NC. The findings may provide exploratory evidence of the reconfiguration of brain network dynamics underlying spatial deficits in SCD.


Assuntos
Disfunção Cognitiva , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/fisiologia , Disfunção Cognitiva/psicologia , Mapeamento Encefálico/métodos , Probabilidade
19.
Alzheimers Res Ther ; 15(1): 86, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37098612

RESUMO

BACKGROUND: Subjective cognitive decline (SCD) may serve as a symptomatic indicator for preclinical Alzheimer's disease; however, SCD is a heterogeneous entity regarding clinical progression. We aimed to investigate whether spatial navigation could reveal subcortical structural alterations and the risk of progression to objective cognitive impairment in SCD individuals. METHODS: One hundred and eighty participants were enrolled: those with SCD (n = 80), normal controls (NCs, n = 77), and mild cognitive impairment (MCI, n = 23). SCD participants were further divided into the SCD-good (G-SCD, n = 40) group and the SCD-bad (B-SCD, n = 40) group according to their spatial navigation performance. Volumes of subcortical structures were calculated and compared among the four groups, including basal forebrain, thalamus, caudate, putamen, pallidum, hippocampus, amygdala, and accumbens. Topological properties of the subcortical structural covariance network were also calculated. With an interval of 1.5 years ± 12 months of follow-up, the progression rate to MCI was compared between the G-SCD and B-SCD groups. RESULTS: Volumes of the basal forebrain, the right hippocampus, and their respective subfields differed significantly among the four groups (p < 0.05, false discovery rate corrected). The B-SCD group showed lower volumes in the basal forebrain than the G-SCD group, especially in the Ch4p and Ch4a-i subfields. Furthermore, the structural covariance network of the basal forebrain and right hippocampal subfields showed that the B-SCD group had a larger Lambda than the G-SCD group, which suggested weakened network integration in the B-SCD group. At follow-up, the B-SCD group had a significantly higher conversion rate to MCI than the G-SCD group. CONCLUSION: Compared to SCD participants with good spatial navigation performance, SCD participants with bad performance showed lower volumes in the basal forebrain, a reorganized structural covariance network of subcortical nuclei, and an increased risk of progression to MCI. Our findings indicated that spatial navigation may have great potential to identify SCD subjects at higher risk of clinical progression, which may contribute to making more precise clinical decisions for SCD individuals who seek medical help.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Navegação Espacial , Humanos , Testes Neuropsicológicos , Doença de Alzheimer/complicações , Disfunção Cognitiva/psicologia , Progressão da Doença
20.
Transl Stroke Res ; 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36967436

RESUMO

Cerebral small vessel disease (CSVD) is a common disease that seriously endangers people's health, and is easily overlooked by both patients and clinicians due to its near-silent onset. Dynamic functional connectivity (DFC) is a new concept focusing on the dynamic features and patterns of brain networks that represents a powerful tool for gaining novel insight into neurological diseases. To assess alterations in DFC in CSVD patients, and the correlation of DFC with cognitive function. We enrolled 35 CSVD patients and 31 normal control subjects (NC). Resting-state functional MRI (rs-fMRI) with a sliding-window approach and k-means clustering based on independent component analysis (ICA) was used to evaluate DFC. The temporal properties of fractional windows and the mean dwell time in each state, as well as the number of transitions between each pair of DFC states, were calculated. Additionally, we assessed the functional connectivity (FC) strength of the dynamic states and the associations of altered neuroimaging measures with cognitive performance. A dynamic analysis of all included subjects suggested four distinct functional connectivity states. Compared with the NC group, the CSVD group had more fractional windows and longer mean dwell times in state 4 characterized by sparse FC both inter-network and intra-networks. Additionally, the CSVD group had a reduced number of windows and shorter mean dwell times compared to the NC group in state 3 characterized by highly positive FC between the somatomotor and visual networks, and negative FC in the basal ganglia and somatomotor and visual networks. The number of transitions between state 2 and state 3 and between state 3 and state 4 was significantly reduced in the CSVD group compared to the NC group. Moreover, there was a significant difference in the FC strength between the two groups, and the altered temporal properties of DFC were significantly related to cognitive performance. Our study indicated that CSVD is characterized by altered temporal properties in DFC that may be sensitive neuroimaging biomarkers for early disease identification. Further study of DFC alterations could help us to better understand the progressive dysfunction of networks in CSVD patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA