Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Mar Drugs ; 22(10)2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39452867

RESUMO

Triple-negative breast cancer (TNBC) is a subtype of breast cancer with high mortality and drug resistance and no targeted drug available at present. Compound 4, a staurosporine alkaloid derived from Streptomyces sp. NBU3142 in a marine sponge, exhibits potent anti-TNBC activity. This research investigated its impact on MDA-MB-231 cells and their drug-resistant variants. The findings highlighted that compound 4 inhibits breast cancer cell migration, induces apoptosis, arrests the cell cycle, and promotes cellular senescence in both regular and paclitaxel-resistant MDA-MB-231 cells. Additionally, this study identified mitogen-activated protein kinase kinase kinase 11 (MAP3K11) as a target of compound 4, implicating its role in breast tumorigenesis by affecting cell proliferation, migration, and cell cycle progression.


Assuntos
Antineoplásicos , Apoptose , Movimento Celular , Proliferação de Células , Estaurosporina , Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Humanos , Estaurosporina/farmacologia , Estaurosporina/análogos & derivados , Linhagem Celular Tumoral , Animais , Feminino , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Poríferos , Streptomyces , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , MAP Quinase Quinase Quinases/metabolismo , MAP Quinase Quinase Quinases/antagonistas & inibidores , Senescência Celular/efeitos dos fármacos
2.
J Pharm Anal ; 14(9): 100978, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39315124

RESUMO

Jumonji domain-containing protein D3 (JMJD3) is a 2-oxoglutarate-dependent dioxygenase that specifically removes transcriptional repression marks di- and tri-methylated groups from lysine 27 on histone 3 (H3K27me2/3). The erasure of these marks leads to the activation of some associated genes, thereby influencing various biological processes, such as development, differentiation, and immune response. However, comprehensive descriptions regarding the relationship between JMJD3 and inflammation are lacking. Here, we provide a comprehensive overview of JMJD3, including its structure, functions, and involvement in inflammatory pathways. In addition, we summarize the evidence supporting JMJD3's role in several inflammatory diseases, as well as the potential therapeutic applications of JMJD3 inhibitors. Additionally, we also discuss the challenges and opportunities associated with investigating the functions of JMJD3 and developing targeted inhibitors and propose feasible solutions to provide valuable insights into the functional exploration and discovery of potential drugs targeting JMJD3 for inflammatory diseases.

3.
Cell Signal ; 124: 111376, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39236836

RESUMO

While certain members of ubiquitin-coupled enzymes (E2s) have garnered attention as potential therapeutic targets across diverse diseases, research progress on Ubiquitin-Conjugating Enzyme 5 (UBC5)-a pivotal member of the E2s family involved in crucial cellular processes such as apoptosis, DNA repair, and signal transduction-has been relatively sluggish. Previous findings suggest that UBC5 plays a vital role in the ubiquitination of various target proteins implicated in diseases and homeostasis, particularly in various cancer types. This review comprehensively introduces the structure and biological functions of UBC5, with a specific focus on its contributions to the onset and advancement of diverse diseases. It suggests that targeting UBC5 holds promise as a therapeutic approach for disease therapy. Recent discoveries highlighting the high homology between UBC5, UBC1, and UBC4 have provided insight into the mechanism of UBC5 in protein degradation and the regulation of cellular functions. As our comprehension of the structural distinctions among UBC5 and its homologues, namely UBC1 and UBC4, advances, our understanding of UBC5's functional significance also expands.

4.
Insects ; 15(9)2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39336605

RESUMO

The rice leaf-roller Cnaphalocrocis medinalis is an important migratory pest of rice. We conducted a study to determine the physiological status of adults trapped by a sex pheromone and floral odor. In the immigrant group, the number of males trapped by the floral odor was greater than the number caught by sex pheromone trapping. The volume of testes was similar in the above two trapping methods but was smaller than in the sweep net method. The ovary developmental grade, mating rate, and number of matings of females caught in floral odor trap were higher than in those caught in the sweep net. In the local breeding group, the number of males trapped by sex pheromones was greater than the number trapped by the floral odor. The volume of testes was smaller in the floral odor trap compared to the pheromone trap group, with the largest in the sweep net group. The ovarian developmental grade, mating rate, and number of matings of females were significantly higher in the floral odor trap group than in the sweep net group. In the emigrant group, the adult olfactory response to the sex pheromone and floral odor was low. The volume of testes was larger in the sweep net group compared to the moths caught by floral odor trapping. The number of eggs laid by female immigrants trapped by the floral odor and sweep net was similar, while the number in the local breeding group was greater in moths caught with the sweep net in comparison with those caught by the floral odor trap. The difference in egg hatchability between the two trapping methods in both immigrants and local breedings was not significant.

5.
J Fish Dis ; 47(10): e13996, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38973170

RESUMO

Displaying antigens on yeast surface as an oral vaccine has been widely explored, while its potential as an immersion vaccine has not been evaluated. Here, an immersion vaccine was prepared by displaying ORF25 of Cyprinid herpesvirus 2 (CyHV-2) on the surface of Saccharomyces cerevisiae. Carassius auratus gibelio was immersion immunized by 2 × 107 CFU/mL yeast for 2 h, and reinforce the immunity using the same method 14 days after the first immunization. The results showed that ORF25 specific antibody in immunized crucian carp serum was detected at a high level, and the mRNA expression level of IgM, IgT, IL-1ß, and IFN-1 in vaccinated head-kidney and spleen tissues were higher than the control group, indicating that innate and adaptive immunity were induced. Moreover, the immersion vaccination provided effective protection for fish against CyHV-2, leading to a relative percent survival of 50.2%. Meanwhile, immersion vaccination restrained virus replication and histological damage in CyHV-2 infected crucian carp. Our data suggested that immersion immunization of S. cerevisiae-displayed ORF25 could be served as a candidate vaccine to prevent CyHV-2 infection.


Assuntos
Doenças dos Peixes , Infecções por Herpesviridae , Herpesviridae , Saccharomyces cerevisiae , Animais , Saccharomyces cerevisiae/imunologia , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/prevenção & controle , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Herpesviridae/imunologia , Carpa Dourada/imunologia , Imersão , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Imunização/veterinária , Carpas , Proteínas Virais/genética , Proteínas Virais/imunologia , Vacinação/veterinária
6.
Nature ; 631(8022): 826-834, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38987597

RESUMO

Glutamate is traditionally viewed as the first messenger to activate NMDAR (N-methyl-D-aspartate receptor)-dependent cell death pathways in stroke1,2, but unsuccessful clinical trials with NMDAR antagonists implicate the engagement of other mechanisms3-7. Here we show that glutamate and its structural analogues, including NMDAR antagonist L-AP5 (also known as APV), robustly potentiate currents mediated by acid-sensing ion channels (ASICs) associated with acidosis-induced neurotoxicity in stroke4. Glutamate increases the affinity of ASICs for protons and their open probability, aggravating ischaemic neurotoxicity in both in vitro and in vivo models. Site-directed mutagenesis, structure-based modelling and functional assays reveal a bona fide glutamate-binding cavity in the extracellular domain of ASIC1a. Computational drug screening identified a small molecule, LK-2, that binds to this cavity and abolishes glutamate-dependent potentiation of ASIC currents but spares NMDARs. LK-2 reduces the infarct volume and improves sensorimotor recovery in a mouse model of ischaemic stroke, reminiscent of that seen in mice with Asic1a knockout or knockout of other cation channels4-7. We conclude that glutamate functions as a positive allosteric modulator for ASICs to exacerbate neurotoxicity, and preferential targeting of the glutamate-binding site on ASICs over that on NMDARs may be strategized for developing stroke therapeutics lacking the psychotic side effects of NMDAR antagonists.


Assuntos
Canais Iônicos Sensíveis a Ácido , Isquemia Encefálica , Ácido Glutâmico , Animais , Feminino , Humanos , Masculino , Camundongos , 2-Amino-5-fosfonovalerato/efeitos adversos , 2-Amino-5-fosfonovalerato/metabolismo , 2-Amino-5-fosfonovalerato/farmacologia , Canais Iônicos Sensíveis a Ácido/química , Canais Iônicos Sensíveis a Ácido/deficiência , Canais Iônicos Sensíveis a Ácido/efeitos dos fármacos , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Regulação Alostérica/efeitos dos fármacos , Sítios de Ligação/genética , Isquemia Encefálica/induzido quimicamente , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Ácido Glutâmico/análogos & derivados , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacologia , Ácido Glutâmico/toxicidade , Camundongos Knockout , Mutagênese Sítio-Dirigida , Prótons , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo
7.
J Virol ; 98(7): e0069724, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38916400

RESUMO

Micropterus salmoides rhabdovirus (MSRV) is an important pathogen of largemouth bass. Despite extensive research, the functional receptors of MSRV remained unknown. This study identified the host protein, laminin receptor (LamR), as a cellular receptor facilitating MSRV entry into host cells. Our results demonstrated that LamR directly interacts with MSRV G protein, playing a pivotal role in the attachment and internalization processes of MSRV. Knockdown of LamR with siRNA, blocking cells with LamR antibody, or incubating MSRV virions with soluble LamR protein significantly reduced MSRV entry. Notably, we found that LamR mediated MSRV entry via clathrin-mediated endocytosis. Additionally, our findings revealed that MSRV G and LamR were internalized into cells and co-localized in the early and late endosomes. These findings highlight the significance of LamR as a cellular receptor facilitating MSRV binding and entry into target cells through interaction with the MSRV G protein. IMPORTANCE: Despite the serious epidemic caused by Micropterus salmoides rhabdovirus (MSRV) in largemouth bass, the precise mechanism by which it invades host cells remains unclear. Here, we determined that laminin receptor (LamR) is a novel target of MSRV, that interacts with its G protein and is involved in viral attachment and internalization, transporting with MSRV together in early and late endosomes. This is the first report demonstrating that LamR is a cellular receptor in the MSRV life cycle, thus contributing new insights into host-pathogen interactions.


Assuntos
Doenças dos Peixes , Receptores de Laminina , Rhabdoviridae , Internalização do Vírus , Animais , Receptores de Laminina/metabolismo , Rhabdoviridae/metabolismo , Rhabdoviridae/fisiologia , Doenças dos Peixes/virologia , Doenças dos Peixes/metabolismo , Bass/virologia , Bass/metabolismo , Receptores Virais/metabolismo , Infecções por Rhabdoviridae/virologia , Infecções por Rhabdoviridae/metabolismo , Endocitose
8.
Nat Commun ; 15(1): 5288, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902277

RESUMO

Psoriasis is an immune-mediated skin disease associated with neurogenic inflammation, but the underlying molecular mechanism remains unclear. We demonstrate here that acid-sensing ion channel 3 (ASIC3) exacerbates psoriatic inflammation through a sensory neurogenic pathway. Global or nociceptor-specific Asic3 knockout (KO) in female mice alleviates imiquimod-induced psoriatic acanthosis and type 17 inflammation to the same extent as nociceptor ablation. However, ASIC3 is dispensable for IL-23-induced psoriatic inflammation that bypasses the need for nociceptors. Mechanistically, ASIC3 activation induces the activity-dependent release of calcitonin gene-related peptide (CGRP) from sensory neurons to promote neurogenic inflammation. Botulinum neurotoxin A and CGRP antagonists prevent sensory neuron-mediated exacerbation of psoriatic inflammation to similar extents as Asic3 KO. In contrast, replenishing CGRP in the skin of Asic3 KO mice restores the inflammatory response. These findings establish sensory ASIC3 as a critical constituent in psoriatic inflammation, and a promising target for neurogenic inflammation management.


Assuntos
Canais Iônicos Sensíveis a Ácido , Peptídeo Relacionado com Gene de Calcitonina , Camundongos Knockout , Psoríase , Células Receptoras Sensoriais , Animais , Canais Iônicos Sensíveis a Ácido/metabolismo , Canais Iônicos Sensíveis a Ácido/genética , Feminino , Psoríase/metabolismo , Psoríase/patologia , Psoríase/genética , Psoríase/induzido quimicamente , Camundongos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/genética , Células Receptoras Sensoriais/metabolismo , Pele/metabolismo , Pele/patologia , Imiquimode , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Inflamação/metabolismo , Inflamação Neurogênica/metabolismo , Humanos , Nociceptores/metabolismo , Interleucina-23/metabolismo , Interleucina-23/genética
9.
Bioorg Chem ; 147: 107400, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38688196

RESUMO

Although certain members of the Ubiquitin-specific peptidases (USPs) have been recognized as promising therapeutic targets for various diseases, research progress regarding USP21 has been relatively sluggish in its early stages. USP21 is a crucial member of the USPs subfamily, involved in diverse cellular processes such as apoptosis, DNA repair, and signal transduction. Research findings from the past decade demonstrate that USP21 mediates the deubiquitination of multiple well-known target proteins associated with critical cellular processes relevant to both disease and homeostasis, particularly in various cancers.This reviewcomprehensively summarizes the structure and biological functions of USP21 with an emphasis on its role in tumorigenesis, and elucidates the advances on the discovery of tens of small-molecule inhibitors targeting USP21, which suggests that targeting USP21 may represent a potential strategy for cancer therapy.


Assuntos
Neoplasias , Ubiquitina Tiolesterase , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Animais , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Estrutura Molecular
11.
Cell Mol Biol Lett ; 29(1): 32, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443798

RESUMO

RNA-binding proteins (RBPs) are kinds of proteins with either singular or multiple RNA-binding domains (RBDs), and they can assembly into ribonucleic acid-protein complexes, which mediate transportation, editing, splicing, stabilization, translational efficiency, or epigenetic modifications of their binding RNA partners, and thereby modulate various physiological and pathological processes. CUG-BP, Elav-like family 1 (CELF1) is a member of the CELF family of RBPs with high affinity to the GU-rich elements in mRNA, and thus exerting control over critical processes including mRNA splicing, translation, and decay. Mounting studies support that CELF1 is correlated with occurrence, genesis and development and represents a potential therapeutical target for these malignant diseases. Herein, we present the structure and function of CELF1, outline its role and regulatory mechanisms in varieties of homeostasis and diseases, summarize the identified CELF1 regulators and their structure-activity relationships, and prospect the current challenges and their solutions during studies on CELF1 functions and corresponding drug discovery, which will facilitate the establishment of a targeted regulatory network for CELF1 in diseases and advance CELF1 as a potential drug target for disease therapy.


Assuntos
Descoberta de Drogas , Epigênese Genética , Homeostase , RNA , RNA Mensageiro
12.
Ann Anat ; 253: 152230, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367949

RESUMO

Body donation is a valuable resource in medical education, research, clinical diagnosis, and treatment. Consequently, donors are honored as "Silent Mentors" in Chinese medical schools. This article briefly reviews the history, current status, and strategies to promote body donation in China (excluding data from Hong Kong, Macao, and Taiwan regions) and discusses the problems encountered in body donation work in China. After establishing the People's Republic of China in 1949, the central government issued regulations on the use of dissected bodies. In 2001, the "Shanghai Regulations on Body Donation" were officially implemented and became China's first local legislative regulation on body donation. Subsequently, local legislative regulations and rules on body donation were issued in various regions to promote smooth and orderly body donation. There has been tremendous development in body donation in China for more than 40 years; however, the progress of this partial work has been uneven in various areas owing to the influence of traditional ethical concepts. It is, therefore, imperative to legislate body donations at a national level. Raising the public's scientific literacy and changing the traditional concept of funerals can create a positive social atmosphere for body donation, thus increasing the public's awareness and willingness to donate their bodies. Donating the body at the end of life contributes to life science and medical causes and is a noble act worthy of praise.


Assuntos
Educação Médica , Obtenção de Tecidos e Órgãos , Humanos , China , Doadores de Tecidos , Inquéritos e Questionários
13.
Fish Shellfish Immunol ; 145: 109364, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199264

RESUMO

Micropterus salmoides rhabdovirus (MSRV) is one of the main pathogens of largemouth bass, leading to serious economic losses. The G protein, as the only envelope protein present on the surface of MSRV virion, contains immune-related antigenic determinants, thereby becoming the primary target for the design of MSRV vaccines. Here, we displayed the G protein on the surface of yeast cells (named EBY100/pYD1-G) and conducted a preliminary assessment of the protective efficacy of the recombinant yeast vaccine. Upon oral vaccination, a robust immune response was observed in systemic and mucosal tissue. Remarkably, following the MSRV challenge, the relative percent survival of EBY100/pYD1-G treated largemouth bass significantly increased to 66.7 %. In addition, oral administration inhibited viral replication and alleviated the pathological symptoms of MSRV-infected largemouth bass. These results suggest that EBY100/pYD1-G could be used as a potential oral vaccine against MSRV infection.


Assuntos
Bass , Doenças dos Peixes , Rhabdoviridae , Animais , Saccharomyces cerevisiae , Vacinação , Proteínas Fúngicas , Vacinas Sintéticas
14.
J Virol ; 97(10): e0071423, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37735152

RESUMO

IMPORTANCE: Although Micropterus salmoides rhabdovirus (MSRV) causes serious fish epidemics worldwide, the detailed mechanism of MSRV entry into host cells remains unknown. Here, we comprehensively investigated the mechanism of MSRV entry into epithelioma papulosum cyprinid (EPC) cells. This study demonstrated that MSRV enters EPC cells via a low pH, dynamin-dependent, microtubule-dependent, and clathrin-mediated endocytosis. Subsequently, MSRV transports from early endosomes to late endosomes and further into lysosomes in a microtubule-dependent manner. The characterization of MSRV entry will further advance the understanding of rhabdovirus cellular entry pathways and provide novel targets for antiviral drug against MSRV infection.


Assuntos
Bass , Rhabdoviridae , Animais , Rhabdoviridae/metabolismo , Bass/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Endocitose , Dinaminas/metabolismo , Microtúbulos/metabolismo , Clatrina/metabolismo , Concentração de Íons de Hidrogênio , Internalização do Vírus
15.
Biochem Pharmacol ; 216: 115799, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37696455

RESUMO

Histone demethylation is a kind of epigenetic modification mediated by a variety of enzymes and participates in regulating multiple physiological and pathological events. Lysine-specific demethylase 7A is a kind of α-ketoglutarate- and Fe(II)-dependent demethylase belonging to the PHF2/8 subfamily of the JmjC demethylases. KDM7A is mainly localized in the nucleus and contributes to transcriptional activation via removing mono- and di-methyl groups from the lysine residues 9 and 27 of Histone H3. Mounting studies support that KDM7A is not only necessary for normal embryonic, neural, and skeletal development, but also associated with cancer, inflammation, osteoporosis, and other diseases. Herein, the structure of KDM7A is described by comparing the similarities and differences of its amino acid sequences of KDM7A and other Histone demethylases; the functions of KDM7A in homeostasis and dyshomeostasis are summarized via documenting its content and related signaling; the currently known KDM7A-specific inhibitors and their structural relationship are listed based on their structure optimization and pharmacological activities; and the challenges and opportunities in exploring functions and developing targeted agents of KDM7A are also prospected via presenting encountered problems and potential solutions, which will provide an insight in functional exploration and drug discovery for KDM7A-related diseases.

16.
Pathogens ; 12(8)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37623998

RESUMO

Procambarus clarkii is an important economic aquaculture species worldwide. Infectious hypodermal and hematopoietic necrosis virus (IHHNV) infects numerous crustacean hosts, including P. clarkii. However, there have been few reports on the prevalence of IHHNV in P. clarkii. In this study, 200 farmed P. clarkii were collected from Anhui, Jiangsu, Zhejiang, Hunan, Hubei, and Sichuan provinces in China. PCR detection was employed per the protocol by the World Organization for Animal Health (WOAH) to identify and detect the presence of IHHNV. The positive rate of IHHNV in different provinces ranged from 16.7 to 56.7%, and the overall IHHNV-positive rate was 38.5%. IHHNV strains isolated in this study related closely to infectious IHHNV and split into two major distinct branches. Besides, the IHHNV strains shared a high homology (93.4-99.4%). These findings suggest that a high prevalence of IHHNV was established in farmed P. clarkii in the middle and lower reaches of the Yangtze River.

17.
Vaccines (Basel) ; 11(1)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36680030

RESUMO

Cyprinid herpesvirus 2 (CyHV-2) is the etiological agent of herpesviral hematopoietic necrosis (HVHN) disease, which causes serious economic losses in the crucian carp culture industry. In this study, by displaying ORF132 on the surface of Saccharomyces cerevisiae cells (named EBY100/pYD1-ORF132), we evaluated the protective efficacy of oral administration against CyHV-2 infection. Intense innate and adaptive immune responses were evoked in both mucosal and systemic tissues after oral vaccination with EBY100/pYD1-ORF132. Importantly, oral vaccination provided significant protection for crucian carp post CyHV-2 infection, resulting in a relative percent survival (RPS) of 64%. In addition, oral administration suppressed the virus load and relieved histological damage in selected tissues. Our results indicated that surface-displayed ORF132 on S. cerevisiae could be used as potential oral vaccine against CyHV-2 infection.

18.
Transl Stroke Res ; 14(6): 955-969, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36324028

RESUMO

Early brain injury (EBI) following subarachnoid hemorrhage (SAH) is characterized by rapid development of neuron apoptosis and dysregulated inflammatory response. Microglia efferocytosis plays a critical role in the clearance of apoptotic cells, attenuation of inflammation, and minimizing brain injury in various pathological conditions. Here, using a mouse SAH model, we aim to investigate whether microglia efferocytosis is involved in post-SAH inflammation and to determine the underlying signaling pathway. We hypothesized that TAM receptors and their ligands regulate this process. To prove our hypothesis, the expression and cellular location of TAM (Tyro3, Axl, and Mertk) receptors and their ligands growth arrest-specific 6 (Gas6) and Protein S (ProS1) were examined by PCR, western blots, and fluorescence immunostaining. Thirty minutes after SAH, mice received an intraventricular injection of recombinant Gas6 (rGas6) or recombinant ProS1 (rPros1) and underwent evaluations of inflammatory mediator expression, neurological deficits, and blood-brain barrier integrity at 24 h. Microglia efferocytosis of apoptotic neurons was analyzed in vivo and in vitro. The potential mechanism was determined by inhibiting or knocking down TAM receptors and Rac1 by specific inhibitors or siRNA. SAH induced upregulation of Axl and its ligand Gas6. The administration of rGas6 but not rPros1 promoted microglia efferocytosis, alleviated inflammation, and ameliorated SAH-induced BBB breakdown and neurological deficits. The beneficial effects of rGas6 were arrogated by inhibiting or knocking down Axl and Rac1. We concluded that rGas6 attenuated the development of early brain injury in mice after SAH by facilitating microglia efferocytosis and preventing inflammatory response, which is partly dependent on activation of Axl and Rac1.


Assuntos
Lesões Encefálicas , Hemorragia Subaracnóidea , Animais , Microglia/patologia , Hemorragia Subaracnóidea/patologia , Transdução de Sinais , Inflamação/metabolismo , Modelos Animais de Doenças
19.
Br J Pharmacol ; 180(10): 1339-1361, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36521846

RESUMO

BACKGROUND AND PURPOSE: Atopic dermatitis is a common chronic pruritic inflammatory disease of the skin involving neuro-immune communication. Neuronal mechanism-based therapeutic treatments remain lacking. We investigated the efficacy of intravenous lidocaine therapy on atopic dermatitis and the underlying neuro-immune mechanism. EXPERIMENTAL APPROACH: Pharmacological intervention, immunofluorescence, RNA-sequencing, genetic modification and immunoassay were performed to dissect the neuro-immune basis of itch and inflammation in atopic dermatitis-like mouse model and in patients. KEY RESULTS: Lidocaine alleviated skin lesions and itch in both atopic dermatitis patients and calcipotriol (MC903)-induced atopic dermatitis model by blocking subpopulation of sensory neurons. QX-314, a charged NaV blocker that enters through pathologically activated large-pore ion channels and selectivity inhibits a subpopulation of sensory neurons, has the same effects as lidocaine in atopic dermatitis model. Genetic silencing NaV 1.8-expressing sensory neurons was sufficient to restrict cutaneous inflammation and itch in the atopic dermatitis model. However, pharmacological blockade of TRPV1-positive nociceptors only abolished persistent itch but did not affect skin inflammation in the atopic dermatitis model, indicating a difference between sensory neuronal modulation of skin inflammation and itch. Inhibition of activity-dependent release of calcitonin gene-related peptide (CGRP) from sensory neurons by lidocaine largely accounts for the therapeutic effect of lidocaine in the atopic dermatitis model. CONCLUSION AND IMPLICATIONS: NaV 1.8+ sensory neurons play a critical role in pathogenesis of atopic dermatitis and lidocaine is a potential anti-inflammatory and anti-pruritic agent for atopic dermatitis. A dissociable difference for sensory neuronal modulation of skin inflammation and itch contributes to further understanding of pathogenesis in atopic dermatitis.


Assuntos
Dermatite Atópica , Camundongos , Animais , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/patologia , Prurido/tratamento farmacológico , Pele/patologia , Inflamação/patologia , Células Receptoras Sensoriais
20.
Am J Transl Res ; 14(11): 8049-8063, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505306

RESUMO

OBJECTIVE: The purpose of this investigation was to study the expression profile and potential function of circular RNA (circRNA) and long noncoding RNA (lncRNA) in triple-negative breast cancer (TNBC). METHODS: RNA sequencing technology was used to detect differentially expressed circRNAs and lncRNAs between TNBC tissues and the adjacent tissue. The potential functions of these different RNAs were analyzed by GO and KEGG enrichment analysis by bioinformatics tools. We also selected and analyzed these key circRNAs and lncRNAs to verify their important functions in TNBC. RESULTS: A total of 139 differentially expressed circRNAs and 1001 lncRNAs were obtained. The co-expression analysis showed that the hub lncRNAs (OIP5-AS1, DRAIC) were associated with several tumors and mainly enriched in tumor metastasis. We also screened 5 circRNA-hosting genes (NTRK2, FNTA, BAPGEF2, MGST2, ADH1B) that were associated with the brain-derived neurotrophic factor (BDNF) receptor signaling pathway and cerebral cortex development, as well as AMPK and TGF-ß signaling pathway. CONCLUSION: We identified a large number of differentially expressed circRNAs and lncRNAs, which provide useful insight in understanding TNBC carcinogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA