Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Plast Reconstr Surg Glob Open ; 11(6): e5100, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37388427

RESUMO

For over 100 years, autologous skin grafts have remained the gold standard for the reconstruction of wounds but are limited in availability. Acellular tissue-engineered skin constructs (acellular TCs) and cellular tissue-engineered skin constructs (cellular TCs) may address these limitations. This systematic review and meta-analysis compare outcomes between them. Methods: A systematic review was conducted using PRISMA guidelines, querying MEDLINE, Embase, Web of Science, and Cochrane to assess graft incorporation, failure, and wound healing. Case reports/series, reviews, in vitro/in vivo work, non-English articles or articles without full text were excluded. Results: Sixty-six articles encompassing 4076 patients were included. No significant differences were found between graft failure rates (P = 0.07) and mean difference of percent reepithelialization (p = 0.92) when split-thickness skin grafts were applied alone versus co-grafted with acellular TCs. Similar mean Vancouver Scar Scale was found for these two groups (p = 0.09). Twenty-one studies used at least one cellular TC. Weighted averages from pooled results did not reveal statistically significant differences in mean reepithelialization or failure rates for epidermal cellular TCs compared with split-thickness skin grafts (p = 0.55). Conclusions: This systematic review is the first to illustrate comparable functional and wound healing outcomes between split-thickness skin grafts alone and those co-grafted with acellular TCs. The use of cellular TCs seems promising from preliminary findings. However, these results are limited in clinical applicability due to the heterogeneity of study data, and further level 1 evidence is required to determine the safety and efficacy of these constructs.

2.
Arch Dermatol Res ; 315(1): 17-31, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35169876

RESUMO

The data on skin substitute usage for managing Mohs micrographic surgery (MMS) wounds remain limited. This systematic review aimed to provide an overview of skin substitutes employed for MMS reconstruction, summarize clinical characteristics of patients undergoing skin substitute-based repair after MMS, and identify advantages and limitations of skin substitute implementation. A systematic review of Ovid MEDLINE, EMBASE, Cochrane Library, and Web of Science databases, from inception to April 7, 2021, identified all cases of MMS defects repaired using skin substitutes. A total of 687 patients were included. The mean patient age was 70 years (range: 6-98 years). Commonly used skin substitutes were porcine collagen (n = 397), bovine collagen (n = 78), Integra (n = 53), Hyalofill (n = 43), amnion/chorion-derived grafts (n = 40), and allogeneic epidermal-dermal composite grafts (n = 35). Common factors influencing skin substitute selection were cost, healing efficacy, cosmetic outcome, patient comfort, and ease of use. Some articles did not specify patient and wound characteristics. Skin substitute usage in MMS reconstruction is not well-guided. Blinded randomized control trials comparing the efficacy of skin substitutes and traditional repair methods are imperative for establishing evidence-based guidelines on skin substitute usage following MMS.


Assuntos
Neoplasias Cutâneas , Pele Artificial , Animais , Bovinos , Cirurgia de Mohs/métodos , Colágeno/uso terapêutico , Neoplasias Cutâneas/cirurgia
3.
Exp Dermatol ; 31(4): 516-527, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34727395

RESUMO

Tissue engineering has been successful in reproducing human skin equivalents while incorporating new approaches such as three-dimensional (3D) bioprinting. The latter method offers a plethora of advantages including increased production scale, ability to incorporate multiple cell types and printing on demand. However, the quality of printed skin equivalents compared to those developed manually has never been assessed. To leverage the benefits of this method, it is imperative that 3D-printed skin should be structurally and functionally similar to real human skin. Here, we developed four bilayered human skin epidermal-dermal equivalents: non-printed dermis and epidermis (NN), printed dermis and epidermis (PP), printed epidermis and non-printed dermis (PN), and non-printed epidermis and printed dermis (NP). The effects of printing induced shear stress [0.025 kPa (epidermis); 0.049 kPa (dermis)] were characterized both at the cellular and at the tissue level. At cellular level, no statistically significant differences in keratinocyte colony-forming efficiency (CFE) (p = 0.1641) were observed. In the case of fibroblasts, no significant differences in the cell alignment index (p < 0.1717) and their ability to contract collagen gel (p = 0.851) were detected. At the tissue levels, all the four skin equivalents were characterized using histological and immunohistochemical analysis with no significant differences found in either epidermal basal cell count, thickness of viable epidermis, and relative intensity of filaggrin and claudin-1. Our results demonstrated that 3D printing can achieve the same high-quality skin constructs as have been developed traditionally, thus opening new avenues for numerous high-throughput industrial and clinical applications.


Assuntos
Bioimpressão , Bioimpressão/métodos , Fibroblastos/metabolismo , Humanos , Queratinócitos/metabolismo , Impressão Tridimensional , Pele/patologia , Engenharia Tecidual/métodos
4.
Front Cell Dev Biol ; 8: 607275, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33425914

RESUMO

While topotecan (TPT) is a first- and second-line chemotherapeutic drug in treating lung cancer, the development of drug resistance in tumors still reserves as a major obstacle to chemotherapeutic success. Therefore, a better understanding of the mechanisms of topotecan resistance is critical. In this study, the first topotecan-resistant human non-small cell lung cancer (NSCLC) cell line, termed NCI-H460/TPT10, was established from the parental NCI-H460 cell line. NCI-H460/TPT10 cells exhibited a 394.7-fold resistance to TPT, and cross-resistance to SN-38, mitoxantrone, and doxorubicin, compared to parental NCI-H460 cells. Overexpression of ABCG2 localized on the cell membrane, but not ABCB1 or ABCC1, was found in NCI-H460/TPT10 cells, indicating that ABCG2 was likely to be involved in topotecan-resistance. This was confirmed by the abolishment of drug resistance in NCI-H460/TPT10 cells after ABCG2 knockout. Moreover, the involvement of functional ABCG2 as a drug efflux pump conferring multidrug resistance (MDR) was indicated by low intracellular accumulation of TPT in NCI-H460/TPT10 cells, and the reversal effects by ABCG2 inhibitor Ko143. The NCI-H460/TPT10 cell line and its parental cell line can be useful for drug screening and developing targeted strategies to overcome ABCG2-mediated MDR in NSCLC.

5.
Cell Physiol Biochem ; 45(4): 1515-1528, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29486476

RESUMO

BACKGROUND/AIMS: The overexpression of ATP-Binding Cassette (ABC) transporters has known to be one of the major obstacles impeding the success of chemotherapy in drug resistant cancers. In this study, we evaluated voruciclib, a CDK 4/6 inhibitor, for its chemo-sensitizing activity in ABCB1- and ABCG2- overexpressing cells. METHODS: Cytotoxicity and reversal effect of voruciclib was determined by MTT assay. The intracellular accumulation and efflux of ABCB1 and ABCG2 substrates were measured by scintillation counter. The effects on expression and intracellular localization of ABCB1 and ABCG2 proteins were determined by Western blotting and immunofluorescence, respectively. Vanadate-sensitive ATPase assay was done to determine the effect of voruciclib on the ATPase activity of ABCB1 and ABCG2. Flow cytometric analysis was done to determine the effect of voruciclib on apoptosis of ABCB1 and ABCG2-overexpressing cells and docking analysis was done to determine the interaction of voruciclib with ABCB1 and ACBG2 protein. RESULTS: Voruciclib significantly potentiated the effect of paclitaxel and doxorubicin in ABCB1-overexpressing cells, as well as mitoxantrone and SN-38 in ABCG2-overexpressing cells. Voruciclib moderately sensitized ABCC10- overexpressing cells to paclitaxel, whereas it did not alter the cytotoxicity of substrates of ABCC1. Furthermore, voruciclib increased the intracellular accumulation and decreased the efflux of substrate anti-cancer drugs from ABCB1- or ABCG2-overexpressing cells. However, voruciclib did not alter the expression or the sub-cellular localization of ABCB1 or ABCG2. Voruciclib stimulated the ATPase activity of both ABCB1 and ABCG2 in a concentration-dependent manner. Lastly, voruciclib exhibited a drug-induced apoptotic effect in ABCB1- or ABCG2- overexpressing cells. CONCLUSION: Voruciclib is currently a phase I clinical trial drug. Our findings strongly support its potential use in combination with conventional anti-cancer drugs for cancer chemotherapy.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Benzopiranos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Imino Furanoses/farmacologia , Proteínas de Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Benzopiranos/química , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/metabolismo , Doxorrubicina/farmacologia , Células HEK293 , Humanos , Imino Furanoses/química , Mitoxantrona/farmacologia , Simulação de Acoplamento Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Mutação , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Paclitaxel/farmacologia , Inibidores de Proteínas Quinases/química , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA