Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
ACS Nano ; 18(21): 13568-13582, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38723039

RESUMO

Transition metal oxides are promising catalysts for catalytic oxidation reactions but are hampered by low room-temperature activities. Such low activities are normally caused by sparse reactive sites and insufficient capacity for molecular oxygen (O2) activation. Here, we present a dual-stimulation strategy to tackle these two issues. Specifically, we import highly dispersed nickel (Ni) atoms onto MnO2 to enrich its oxygen vacancies (reactive sites). Then, we use molecular ozone (O3) with a lower activation energy as an oxidant instead of molecular O2. With such dual stimulations, the constructed O3-Ni/MnO2 catalytic system shows boosted room-temperature activity for toluene oxidation with a toluene conversion of up to 98%, compared with the O3-MnO2 (Ni-free) system with only 50% conversion and the inactive O2-Ni/MnO2 (O3-free) system. This leap realizes efficient room-temperature catalytic oxidation of transition metal oxides, which is constantly pursued but has always been difficult to truly achieve.

2.
Nat Rev Chem ; 8(6): 410-432, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38755296

RESUMO

Intercalation of atoms, ions and molecules is a powerful tool for altering or tuning the properties - interlayer interactions, in-plane bonding configurations, Fermi-level energies, electronic band structures and spin-orbit coupling - of 2D materials. Intercalation can induce property changes in materials related to photonics, electronics, optoelectronics, thermoelectricity, magnetism, catalysis and energy storage, unlocking or improving the potential of 2D materials in present and future applications. In situ imaging and spectroscopy technologies are used to visualize and trace intercalation processes. These techniques provide the opportunity for deciphering important and often elusive intercalation dynamics, chemomechanics and mechanisms, such as the intercalation pathways, reversibility, uniformity and speed. In this Review, we discuss intercalation in 2D materials, beginning with a brief introduction of the intercalation strategies, then we look into the atomic and intrinsic effects of intercalation, followed by an overview of their in situ studies, and finally provide our outlook.

3.
Adv Colloid Interface Sci ; 324: 103086, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38244533

RESUMO

High internal phase Pickering emulsion (HIPPE) is renowned for its exceptionally high-volume fraction of internal phase, leading to flocculated yet deformed emulsion droplets and unique rheological behaviors such as shear-thinning property, viscoelasticity, and thixotropic recovery. Alongside the inherent features of regular emulsion systems, such as large interfacial area and well-mixture of two immiscible liquids, the HIPPEs have been emerging as building blocks to construct three-dimensional (3D) scaffolds with customized structures and programmable functions using an extrusion-based 3D printing technique, making 3D-printed HIPPE-based scaffolds attract widespread interest from various fields such as food science, biotechnology, environmental science, and energy transfer. Herein, the recent advances in preparing suitable HIPPEs as 3D printing inks for various applied fields are reviewed. This work begins with the stabilization mechanism of HIPPEs, followed by introducing the origin of their distinctive rheological behaviors and strategies to adjust the rheological behaviors to prepare more eligible HIPPEs as printing inks. Then, the compatibility between extrusion-based 3D printing and HIPPEs as building blocks was discussed, followed by a summary of the potential applications using 3D-printed HIPPE-based scaffolds. Finally, limitations and future perspectives on preparing HIPPE-based materials using extrusion-based 3D printing were presented.

4.
Chem Soc Rev ; 52(22): 7687-7706, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37877319

RESUMO

Atomically thin sheets (e.g., graphene and monolayer molybdenum disulfide) are ideal optical and reaction platforms. They provide opportunities for deciphering some important and often elusive photocatalytic phenomena related to electronic band structures and photo-charges. In parallel, in such thin sheets, fine tuning of photocatalytic properties can be achieved. These include atomic-level regulation of electronic band structures and atomic-level steering of charge separation and transfer. Herein, we review the physics and chemistry of electronic band structures and photo-charges, as well as their state-of-the-art characterization techniques, before delving into their atomic-level deciphering and mastery on the platform of atomically thin sheets.

5.
Nanoscale ; 15(34): 13952-13964, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37581607

RESUMO

Compared with the in situ preparation of ultrathin hydrogel coatings through successive yet tedious steps, ex situ strategies decouple the steps and greatly enhance the maneuverability and convenience of preparing hydrogel coatings. However, the difficulty in preparing sub-micron-thick coatings limits the applicability of ex situ methods in nanotechnology. Herein, we report the ex situ preparation of centimeter-scale ultrathin hydrogel coatings by applying omnidirectional stretching toward pre-gelated hydrogels with necking behaviors. This process involves blowing a bubble directly from a pre-gelated hydrogel and subsequently transferring the resulting hydrogel bubble to different substrates. The as-fabricated coatings exhibit peak-shaped thickness variations, with the thinnest part as low as ∼5 nm and the thickest part controllable from ∼200 nm to several microns. This method can be universally applied to hydrogels with necking behavior triggered by internal particles with partial hydrophobicity. Due to the overall near- or sub-micron thickness and unique thickness distribution, the coatings present concentric rings of different interference colors. With such an observable optical characteristic, the as-prepared hydrogel coatings are applied as sensors to visibly monitor humidity changes or alkaline gas through the visibly observable expansion or contraction of concentric interferometry rings, which is triggered by adsorbing/desorbing the surrounding water or alkaline molecules and the resultant swelling/deswelling of the coatings, respectively. With the universality of the method, we believe that the ex situ strategy can be used as a simple yet efficient environmental nanotechnology to fabricate various types of nanometer-thick hydrogel coatings as detectors to sensitively and visibly monitor surrounding stimuli on demand.

6.
J Hazard Mater ; 457: 131824, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37327610

RESUMO

Water ecosystem contamination from industrial pollutants is an emerging threat to both humans and native species, making it a point of global concern. In this work, fully biobased aerogels (FBAs) were developed by using low-cost cellulose filament (CF), chitosan (CS), citric acid (CA), and a simple and scalable approach, for water remediation applications. The FBAs displayed superior mechanical properties (up to ∼65 kPa m3 kg-1 specific Young's modulus and ∼111 kJ/m3 energy absorption) due to CA acting as a covalent crosslinker in addition to the natural hydrogen bonding and electrostatic interactions between CF and CS. The addition of CS and CA increased the variety of functional groups (carboxylic acid, hydroxyl and amines) on the materials' surface, resulting in super-high dye and heavy metal adsorption capacities (619 mg/g and 206 mg/g for methylene blue and copper, respectively). Further modification of FBAs with a simple approach using methyltrimethoxysilane endowed aerogel oleophilic and hydrophobic properties. The developed FBAs showed a fast performance in water and oil/organic solvents separation with more than 96% efficiency. Besides, the FBA sorbents could be regenerated and reused for multiple cycles without any significant impact on their performance. Moreover, thanks to the presence of amine groups by addition of CS, FBAs also displayed antibacterial properties by preventing the growth of Escherichia coli on their surface. This work demonstrates the preparation of FBAs from abundant, sustainable, and inexpensive natural resources for applications in wastewater purification.

7.
Environ Pollut ; 331(Pt 2): 121845, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37209895

RESUMO

Adsorption of heavy metal ions (e.g., Cd(II)) on clay minerals significantly affects their transport and fate in natural and engineered waterbodies. To date, the role of interfacial ion specificity in the adsorption of Cd(II) on earth-abundant serpentine remains elusive. In this work, the adsorption of Cd(II) on serpentine at typical environment conditions (pH 4.5-5.0), particularly under the complex influence of common environmental anions (e.g., NO3-, SO42-) and cations (e.g., K+, Ca2+, Fe3+, Al3+) was systemically investigated. It was found that the adsorption of Cd(II) on serpentine surface due to the inner-sphere complexation could be negligibly affected by the anion type, yet the cations specifically modulated the Cd(II) adsorption. The presence of mono- and divalent cations moderately enhanced the Cd(II) adsorption by weakening the electrostatic double layer (EDL) repulsion between Cd(II) and Mg-O plane of serpentine, while trivalent cations significantly suppressed the adsorption of Cd(II) due to the competitive adsorption. Based on the spectroscopy analysis, Fe3+ and Al3+ were found to robustly bind the surface active sites of serpentine, thereby preventing the inner-sphere adsorption of Cd(II). The density functional theory (DFT) calculation indicated that Fe(III) and Al(III) exhibited the larger adsorption energy (Ead = -146.1 and -516.1 kcal mol-1, respectively) and stronger electron transfer capacity with serpentine compared to Cd(II) (Ead = -118.1 kcal mol-1), thus resulting in the formation of more stable Fe(III)-O and Al(III)-O inner-sphere complexes. This study provides valuable insights into the influence of interfacial ion specificity on the Cd(II) adsorption in terrestrial and aquatic environments.


Assuntos
Cádmio , Metais Pesados , Cádmio/química , Adsorção , Compostos Férricos , Metais Pesados/química , Cátions/química , Ânions , Concentração de Íons de Hidrogênio
8.
Macromol Rapid Commun ; 44(10): e2300053, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37002781

RESUMO

Highly stretchable, repairable, and tough nanocomposite hydrogels are designed by incorporating hydrophobic carbon chains to create first-layer cross-linking among the polymer matrix and monomer-modified polymerizable yet hydrophobic nanofillers to create second-layer strong polymer-nanofiller clusters involving mostly covalent bonds and electrostatic interactions. The hydrogels are synthesized from three main components: hydrophobic monomer DMAPMA-C18 by reacting N-[3-(dimethylamino)propyl]methacrylamide] (DMAPMA) with 1-bromooctadecane, monomer N,N-dimethylacrylamide (DMAc), and monomer-modified polymerizable hydrophobized cellulose nanocrystal(CNC-G) obtained by reacting CNC with 3-trimethoxysily propyl methacrylate. The polymerization of DMAPMA-C18 and DMAc and physical cross-linking due to the hydrophobic interactions between C18 chains make DMAPMA-C18/DMAc hydrogel. The additional introduction of CNC-G brings more interactions into the final hydrogel (DMAPMA-C18/DMAc/CNC-G): the covalent bonds between CNC-G and DMAPMA-C18/DMAc, hydrophobic interactions, electrostatic interactions between negatively charged CNC-G and positively charged DMAPMA-C18, and hydrogen bonds. The optimum DMAPMA-C18/DMAc/CNC-G hydrogel exhibits excellent mechanical performance with elongation stress of 1085 ± 14 kPa, strain of 4106 ± 311%, toughness of 3.35 × 104  kJ m-3 , Young's modulus of 844 kPa, and compression stress of 5.18 MPa at 85% strain. Besides, the hydrogel exhibits good repairability and promising adhesive ability (83-260 kN m-2 toward various surfaces).


Assuntos
Nanocompostos , Nanopartículas , Nanogéis , Nanocompostos/química , Celulose/química , Polímeros , Nanopartículas/química , Interações Hidrofóbicas e Hidrofílicas , Hidrogéis/química
9.
ACS Appl Mater Interfaces ; 15(12): 16034-16045, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36930887

RESUMO

Hydrogels with different functionalities such as printability, antifreezing properties, adhesion, biocompatibility, and toughness are being continually developed. However, it has been extremely challenging to design adhesive, antifreezing, tough, and biocompatible multifunctional hydrogels with complex shapes simultaneously and prepare them in a short period. In this paper, novel composite hydrogels, which consist of poly(vinyl alcohol) grafted with styrylpyridinium group (PVA-SbQ) and TEMPO-oxidized cellulose nanofibrils (CNF), were successfully synthesized via UV photo-cross-linking. In addition to UV photo-cross-linking, the PVA-SbQ/CNF hydrogels with different shapes could be rapidly printed by facile visible light-based stereolithography printing and laser direct-writing without any photoinitiators in 3 min and 30 s, respectively. The results show that PVA-SbQ/CNF hydrogels are biocompatible because there are no photoinitiators and cross-linkers required during the printing process under visible light. Moreover, the adhesive, antifreezing, mechanical properties, and water-binding capacity of PVA-SbQ/CNF with high-water contents improved significantly as the CNF contents increased. Such hydrogels, which combine multiple advantages, present great potential for application in wound dressings and portable devices with specific requirements for shapes, adhesion, toughness, and tolerance in extreme environments such as dry environments and low temperatures.


Assuntos
Adesivos , Hidrogéis , Hidrogéis/química , Água/química , Luz , Temperatura Baixa
10.
Biomater Adv ; 147: 213318, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36746100

RESUMO

Currently, the lack of bioinks and long printing time limits the further development of biofabrication. Here we report a novel biocompatible, multi-functional and tough 3D printable hydrogel via visible light photocrosslinking of polyvinyl alcohol bearing styrylpyridinium group (PVA-SbQ). The high-resolution PVA-SbQ hydrogels with different designed shapes can be generated via laser direct-writing in 30 s without extra toxic crosslinkers or photoinitiators, and demonstrates excellent biocompatibility. The rapid laser direct-writing technology also results in a super-strong, tough hydrogel with excellent adhesive, swelling, self-healing, and photo-tunable properties due to the photodimerization of styrylpyridinium (SbQ) groups and the left-over massive amount of free hydroxyl groups in the hydrogel. For example, the maximum tensile strength, elongation, compressive strength adhesive strength of printed PVA-SbQ hydrogels can reach 1.0 MPa, 810 %, 33 MPa, 31 kPa, and 25,000 % respectively. And these properties can be adjusted by controlling the parameters for laser direct-writing. In addition, the introduced nitrogen cations by SbQ groups further endow hydrogels with the potential to develop novel functionality, which is demonstrated by integrating negatively charged nanocelluloses in the PVA-SbQ system to develop underwater adhesives, anti-freezing (-24.9 °C), and anti-bacterial hydrogels. This discovery opens multiple doors for developing PVA-SbQ based multi-functional hydrogel for various applications including biofabrication and tissue engineering.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Resistência à Tração , Luz , Redação , Adesivos
11.
Angew Chem Int Ed Engl ; 62(13): e202218016, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36593736

RESUMO

Two-dimensional (2D) transition metal dichalcogenides (TMDs), a rising star in the post-graphene era, are fundamentally and technologically intriguing for photocatalysis. Their extraordinary electronic, optical, and chemical properties endow them as promising materials for effectively harvesting light and catalyzing the redox reaction in photocatalysis. Here, we present a tutorial-style review of the field of 2D TMDs for photocatalysis to educate researchers (especially the new-comers), which begins with a brief introduction of the fundamentals of 2D TMDs and photocatalysis along with the synthesis of this type of material, then look deeply into the merits of 2D TMDs as co-catalysts and active photocatalysts, followed by an overview of the challenges and corresponding strategies of 2D TMDs for photocatalysis, and finally look ahead this topic.

12.
Carbohydr Polym ; 301(Pt B): 120351, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36446511

RESUMO

To eliminate the potential toxicity and biological incompatibility from hydrogels prepared using synthetic polymers, researchers have paid tremendous efforts to design hydrogels using nature-obtainable biopolymers due to their outstanding biocompatibility, low cytotoxicity, and no secondary hazards. Among the biopolymers, cellulose nanocrystals (CNCs) have attracted ever-increasing interest from both academic and industrial sides because of their whisker nanostructure, high axial stiffness, high tensile strength, and abundant hydroxyl groups on the surface. CNCs can provide the three-dimensional (3D) hydrogels with enhanced mechanical properties and designed functions and, therefore, offering CNC-based composite hydrogel wide applications in the fields such as biomedical, tissue engineering, actuator, etc. In this review, we begin with the design rationales of the "CNC-only" hydrogel and CNC-based hydrogels, to illustrate the interactions between CNCs themselves or with the surrounding hydrogel backbones. Then, as a fashionable method, the extrusion-based 3D printing technique for fabricating and shaping CNC-based composite hydrogels was elaborately introduced, followed by a brief review of 3D printed CNC-based hydrogels in different fields. Finally, limitations and future directions of CNC-based hydrogels were discussed. We aim to provide a deeper understanding of CNC-based composite hydrogels in the aspects of rational design, fabrication strategy and highlighted applications in 3D printing.


Assuntos
Celulose , Nanopartículas , Hidrogéis , Impressão Tridimensional , Polímeros
13.
Gels ; 8(10)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36286183

RESUMO

The development of adhesive hydrogel materials has brought numerous advances to biomedical engineering. Hydrogel adhesion has drawn much attention in research and applications. In this paper, the study of hydrogel adhesion is no longer limited to the surface of hydrogels. Here, the effect of the internal crosslinking degree of hydrogels prepared by different methods on hydrogel adhesion was explored to find the generality. The results show that with the increase in crosslinking degree, the hydrogel adhesion decreased significantly due to the limitation of segment mobility. Moreover, two simple strategies to improve hydrogel adhesion generated by hydrogen bonding were proposed. One was to keep the functional groups used for hydrogel adhesion and the other was to enhance the flexibility of polymer chains that make up hydrogels. We hope this study can provide another approach for improving the hydrogel adhesion generated by hydrogen bonding.

14.
Chemosphere ; 301: 134713, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35487350

RESUMO

Rational design of all-solid-state Z-scheme heterojunction with advanced structure is essential for boosting photocatalytic efficiency. Herein, we design and fabricate a novel Z-scheme photocatalyst with leaf architecture (named artificial leaf) via a simple dipping-calcination (DC) process followed by a successive ionic layer adsorption and reaction (SILAR) strategy. The prepared artificial leaf, composing of CdS, InVO4, and BiVO4, holds advanced leaf-like structure and Z-scheme electron transfer pathway. As a result, this novel artificial leaf exhibits outstanding capability for the harvesting of visible light and superior efficiency for the separation of photogenerated electron-hole pairs, as well as remarkably enhanced photocatalytic performance and stability for H2 evolution (with the rate of 5033 µm g-1∙h-1) and pollution degradation (46% pollution can be degraded within 3 h).


Assuntos
Hidrogênio , Águas Residuárias , Catálise , Luz
15.
Sci Rep ; 12(1): 4095, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260780

RESUMO

Asphaltenes from bitumen are abundant resource to be transformed into carbon as promising supercapacitor electrodes, while there is a lack of understanding the impact from different fractions of bitumen and asphaltenes, as well as the presence of transition metals. Here, nanoporous carbon was synthesized from bitumen, hexane-insoluble asphaltenes and N,N-dimethylformamide (DMF)-fractionated asphaltenes by using Mg(OH)2 nanoplates as the template with in-situ KOH activation, and used as an supercapacitor electrode material. All of the carbon exhibited large surface area (1500-2200 m2 g-1) with a distribution of micro and mesopores except for that derived from the DMF-soluble asphaltenes. The pyrolysis of asphaltenes resulted in the formation of nickel oxide/carbon composite (NiO/C), which demonstrated high capacitance of 380 F g-1 at 1 A g-1 discharge current resulting from the pseudocapacitance of NiO and the electrochemical double layer capacitance of the carbon. The NiO/C composite obtained from the DMF-insoluble portion had low NiO content which led to lower capacitance. Meanwhile, the specific capacitance of NiO/C composite from the DMF-soluble part was lower than the unfractionated asphaltene due to the higher NiO content resulting in lower conductivity. Therefore asphaltenes derived from nickel-rich crude bitumen is suitable for the synthesis of nanoporous NiO/C composite material with high capacitance.

16.
Sci Rep ; 12(1): 2901, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190636

RESUMO

To solve the problems of eutrophication and resource crisis, the recovery of phosphorus by struvite (NH4MgPO4·6H2O) precipitation has become a focus of recent research. The feasibility of using Kraft lignin powder as a seed to promote struvite precipitation has been demonstrated in the previous study. In this study, the effect of lignin in promoting struvite precipitation in synthetic wastewater with different characteristics was investigated. Lignin-induced struvite crystallization was tested under various initial concentrations of PO4-P and NH4-N, total suspended solids (TSS) and alkalinity. At pH 7.9, the enhancement of PO4-P recovery remains around 45% under different PO4-P and NH4-N concentrations. Moreover, lignin is more effective under relatively lower alkalinity and still workable to reduce co-precipitates potential under higher alkalinity. Also, the effect of TSS on PO4-P recovery is not significant. Overall, the effect of lignin in promoting phosphorus recovery is relatively stable and can be used in synthetic wastewater with different characteristics.

17.
J Colloid Interface Sci ; 607(Pt 2): 1741-1753, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34598031

RESUMO

HYPOTHESIS: A unique adhesion-shielding (AS)-based method could be used to manufacture magnetic Janus nanoparticles (IM-JNPs) of promising interfacial activities, asymmetric surface wettability, and great performance on deoiling from oily wastewater under the external magnetic field. EXPERIMENTS: The IM-JNPs were characterized using scanning electron microscope (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and Fourier-transform infrared spectroscopy (FTIR). The interfacial properties of IM-JNPs were investigated by the measurements of interfacial pressure-area isotherms (π-A), oil-water interfacial tension, and the related crumpling ratio. The Langmuir-Blodgett (L-B) technique was used to determine the asymmetric surface wettability of the IM-JNPs. The performance and recyclability of IM-JNPs for treating oily wastewater were also investigated. FINDINGS: Using the proposed AS-based method, 17.9 g IM-JNPs were synthesized at a time and exhibited excellent interfacial properties, as indicated by decreasing oil-water interfacial tension from 38 to 27 mN/m. The crumpling behavior of the oil droplet further demonstrated the irreversible deposition of IM-JNPs at the oil droplet surfaces. The L-B technique and water contact angle measurement confirmed the asymmetric surface wettability of the IM-JNPs. The IM-JNPs were applied to successful removal of > 90% emulsified oil droplets from the household-produced oily wastewater under the external magnetic field while realizing facile recyclability and regeneration.


Assuntos
Nanopartículas Multifuncionais , Fenômenos Magnéticos , Óleos , Tensão Superficial , Molhabilidade
18.
Small ; 17(49): e2103521, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34655150

RESUMO

The ultrastretchable (over 12 400%) hydrogel with long-lasting adhesion, strong antibacterial activity, and robust spinnability is developed based on the oxidative decarboxylation and quinone-catechol reversible redox reaction induced by Ag-lignin nanoparticles in a precursor solution containing citric acid (CA), acrylic acid (AA), and poly (acrylamide-co-acrylic acid) (P(AAm-co-AA)). With massive reversible interactions including hydrogen bonds and electrostatic forces, such hydrogel exhibits promising injectability and is facilely spun via manual drawing, draw-spinning, and electrospinning for manufacturing strong hydrogel micro/nanofibers. The resulting fibers exhibit excellent mechanical properties, including tensile stress of 422.0 MPa, strain of 86.5%, Young's modulus of 8.7 GPa, and toughness of 281.6 MJ m-3 . The hydrogel microfibers obtained from a house-built spinner are scaled-up fabricated while retaining promising mechanical properties, as evidenced by lifting a load (317.2 g) using the spun fibers of ≈33 000 times lighter weight (9.5 mg), indicating their great potentials in the applications such as net and safety cord which require robust mechanical properties. Moreover, assisted by a commercial electrospinning machine, nanosized hydrogel fibers are facilely spun on personal protective equipment such as a mask to offer an antiseptic coating with near 100% killing efficiency against airborne bacteria aerosols, demonstrating the capability of spun hydrogel fibers on disinfection-related applications.


Assuntos
Nanofibras , Adesivos , Antibacterianos/farmacologia , Módulo de Elasticidade , Hidrogéis
19.
Water Res ; 200: 117202, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34015576

RESUMO

Warm lime softening is commonly used to reduce hardness, silica, and a small fraction of organic matter from steam-assisted gravity drainage (SAGD) produced water through the addition of lime, soda ash, MgO, coagulant and flocculant. We report a systematic study on the impact of solution chemistry on the epichlorohydrin-dimethylamine coagulant demand for the treatment of synthetic SAGD produced water. Concentrations of magnesium, calcium, sodium bicarbonate, clay (mimicking suspended solids), sodium metasilicate (representing silica), and humic acid (mimicking dissolved organic matter) were varied to study their impact on coagulant demand. The impact of the concentration of lime, soda ash, and MgO on coagulant demand was also studied. Within the studied concentration range, the coagulant dose increased linearly with increasing concentration of humic acid (Ycoagulant = 29 + 0.703XHA) and silica (Ycoagulant = 52 + 0.537Xsilica), and increased slightly with increasing concentration of lime and soda ash, but remained almost unchanged with increasing concentration of dissolved hardness, clay, or MgO. The observations were correlated to the understanding of the electrokinetic properties of CaCO3 and Mg(OH)2 particles in lime softening. The findings provide insights for evaluating onsite coagulant dose and optimizing the process.


Assuntos
Abrandamento da Água , Água , Compostos de Cálcio , Óxidos , Polímeros , Vapor
20.
Langmuir ; 37(2): 810-819, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33406359

RESUMO

Lipase-immobilized cellulosic capsules consisting of hydrophobic ethyl cellulose (EC) and hydrophilic carboxymethyl cellulose (CMC) were developed with a promising interfacial activity and water absorbency for the enhanced Pickering interfacial biocatalysis. Lipase was physically immobilized with water-absorbent materials (CMC) via hydrogen bonding and electrostatic interactions and acted as the interior catalytic core of the capsule. The interfacially active EC worked as the exterior shell, enabling capsules to stabilize the oil-in-water Pickering emulsion for the subsequent Pickering interfacial catalysis. The capsules with CMC created interior water-rich conditions to improve the conformational and enzymatic activity of the immobilized lipase. Compared with capsules without water-absorbent materials, the capsules with CMC enhanced the efficiency of the Pickering interfacial catalysis for the esterification of oleic acid and 1-octanol by 12%. Immobilized with a small amount of lipase (0.0625 g/g), the cellulosic capsules with water absorbency could convert 50.8% of the reactants after 10 h under room temperature, significantly higher than that by the same amount of free lipase in the biphasic system (15%) and a Pickering emulsion (24.1%) stabilized by empty capsules (without lipase). Moreover, the cellulosic capsules could be recycled by simple centrifugation while retaining their high relative catalytic activity for at least eight cycles, demonstrating their sustainable catalytic performance.


Assuntos
Lipase , Água , Biocatálise , Cápsulas , Enzimas Imobilizadas/metabolismo , Esterificação , Lipase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA