Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
Nano Lett ; 24(28): 8702-8708, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38953472

RESUMO

Quasi-2D perovskites based blue light-emitting diodes (LEDs) suffer from its poor electroluminescence performance, mainly caused by the nonradiative recombination in in defect-rich low-n phases and the unbalanced hole-electron injection in the device. Here, we developed a highly efficient quasi-2D perovskite based sky-blue LEDs behaving recorded external quantum efficiency (EQE) of 21.07% by employing carbon dots (CDs) as additives in the hole transport layer (HTL). We ascribe the high EQE to the effective engineering of CDs: (1) The CDs at the interface of HTLs can suppress the formation of low-efficient n = 1 phase, resulting a high luminescence quantum yield and energy transfer efficiency of the mixed n-phase quasi-2D perovskites. (2) The CDs additives can reduce the conductivity of HTL, partially blocking the hole injection, and thus making more balanced hole-electron injection. The CDs-treated devices have excellent Spectral stability and enhanced operational stability and could be a new alternative additive in the perovskite optoelectronic devices.

2.
Free Radic Biol Med ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39025156

RESUMO

PURPOSE: While reactive oxygen species (ROS) have been identified as key redox signaling agents contributing to aging process, which and how specific oxidants trigger healthy longevity remain unclear. This paper aimed to explore the precise role and signaling mechanism of superoxide (O2•-) in health and longevity. METHODS: A tool for precise regulation of O2•- levels in vivo was developed based on the inhibition of superoxide dismutase 1 (SOD1) by tetrathiomolybdate (TM) in C. elegans. Then, we examined the effects of TM on lifespan, reproduction, lipofuscin accumulation, mobility, and stress resistance. Finally, the signaling mechanism for longevity induced by TM-O2•- was screened by transcriptome analysis and tested in sod-1 and argk-1 RNAi strains, sod-2, sod-3, and daf-16 mutants. RESULTS: TM promoted longevity in C. elegans with a concomitant extension of healthy lifespan as indicated by increasing fertility and mobility and reducing lipofuscin accumulation, as well as enhanced resistance to different abiotic stresses. Mechanically, TM could precisely regulate O2•- levels in nematodes via modulating superoxide dismutase 1 activity. An O2•- scavenger Mn(III)TBAP abolished TM-induced lifespan extension, while an O2•- generator paraquat at low concentration mimicked the life prolongation effects. The longevity in TM-treated worms was abolished by sod-1 RNAi but was not affected in sod-2 or sod-3 mutants. Further transcriptome analysis revealed arginine kinase ARGK-1 and its downstream insulin/insulin-like growth factor 1 signaling (IIS) as potential effectors for TM-O2•¯-induced longevity, and argk-1 RNAi or daf-16 mutant nullified the longevity. CONCLUSIONS: These findings indicate that it is feasible to precisely control specific oxidant in vivo and O2•- orchestrates TM-induced health and longevity in C. elegans via ARGK-1-IIS axis.

3.
Dig Liver Dis ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38918127

RESUMO

BACKGROUND: Catenin beta 1 (CTNNB1) mutations are one of the most common mutations involved in hepatocellular carcinoma (HCC) progression. However, the association between CTNNB1 mutations and HCC remains controversial. METHODS: Five tumor samples with wild-type CTNNB1 and three tumor samples with CTNNB1 mutations were collected from patients with HCC for whole transcriptome sequencing. Selected ncRNAs and mRNAs were validated by qPCR in 48 HCC tumors. Selected ncRNA regulatory axes were verified in HCC cells by transfecting mimics and inhibitors of miRNA. RESULTS: A network of differentially expressed (DE) lncRNA/circRNA-miRNA-mRNA was constructed to explore the effects of CTNNB1 mutations on ncRNA regulation. TXNRD1, CES1, MATN2, SERPINA5, lncRNA STAT4-210, hsa_circ_0007824, hsa_circ_0008234, hsa-miR-205-5p and hsa-miR-199a-5p were verified at the RNA expression level to validate the sequencing results. The down-up-down axes GLIS3-209/circ_0085440-miR-205-5p-GHRHR and WNK2-213-miR-3940-3p-LY6E were verified at the expression level, and proved to inhibit and promote cell proliferation, respectively. CONCLUSION: This study demonstrated CTNNB1 mutations associated ncRNA regulatory axes playing different roles in HCC cell proliferation, providing novel insights into the controversial role of CTNNB1 in HCC.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38877802

RESUMO

Aims: Redox signaling plays a key role in skeletal muscle remodeling induced by exercise and prolonged inactivity, but it is unclear which oxidant triggers myofiber hypertrophy due to the lack of strategies to precisely regulate individual oxidants in vivo. In this study, we used tetrathiomolybdate (TM) to dissociate the link between superoxide (O2•-) and hydrogen peroxide and thereby to specifically explore the role of O2•- in muscle hypertrophy in C2C12 cells and mice. Results: TM can linearly regulate intracellular O2•- levels by inhibition of superoxide dismutase 1 (SOD1). A 70% increase in O2•- levels in C2C12 myoblast cells and mice is necessary and sufficient for triggering hypertrophy of differentiated myotubes and can enhance exercise performance by more than 50% in mice. SOD1 knockout blocks TM-induced O2•- increments and thereby prevents hypertrophy, whereas SOD1 restoration rescues all these effects. Scavenging O2•- with antioxidants abolishes TM-induced hypertrophy and the enhancement of exercise performance, whereas the restoration of O2•- levels with a O2•- generator promotes muscle hypertrophy independent of SOD1 activity. Innovation and Conclusion: These findings suggest that O2•- is an endogenous initiator of myofiber hypertrophy and that TM may be used to treat muscle wasting diseases. Our work not only suggests a novel druggable mechanism to increase muscle mass but also provides a tool for precisely regulating O2•- levels in vivo.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38828884

RESUMO

Objective: This meta-analysis aimed to investigate the effect of glucagon-like peptide-1 receptor agonists (GLP-1RAs) on blood glucose and weight in overweight/obese and/or type 2 diabetes mellitus (T2DM) adolescents aged <18 years. Methods: Herein, we searched PubMed, Embase, Web of Science, and Cochrane Library for all randomized controlled trials (RCTs) comparing GLP-1RAs with placebo in overweight/obese and/or T2DM adolescents and extracted relevant data up to August 2023 for meta-analysis. Results: Fourteen RCTs were included in the meta-analysis with a total of 1262 participants. Results revealed that the GLP-1RAs group had a more significant reduction in glycosylated hemoglobin A1c (HbA1c; risk difference (RD)=-0.34%, P<0.001) than the control group. However, there was no difference in fasting blood glucose (FPG; RD=-2.07mg/dL, P=0.065) between the two groups. Nonetheless, the experimental group that administered exenatide showed a no significant reduction in HbA1c (P=0.253) and FPG (P=0.611) between the two groups. The GLP-1RAs group had a more significant decline in body weight (RD=-4.28kg, P=0.002) and BMI (RD=-1.63kg/m2, P=0.002) compared to the control group. The experimental group was adopted with liraglutide (RD=-2.31kg, P=0.038) or exenatide (RD=-2.70kg, P<0.001). Compared to the control group, the experimental group had a more significant drop in body weight than the control group. But for the experimental group that received liraglutide, the BMI had a no significant reduction between the two groups (RD=-0.81kg/m2, P=0.260). For the experimental group that was adopted with exenatide, BMI revealed a more significant decline in the intervention group than in the control group (RD=-1.14kg/m2, P<0.001). Conclusion: This study showed that GLP-1RAs reduced HbA1c, FPG, and weight loss in overweight/obese and/or T2DM adolescents. Liraglutide is better than exenatide in terms of glucose reduction. Nevertheless, in terms of weight control, exenatide is better than liraglutide.

6.
J Am Chem Soc ; 146(19): 12958-12968, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38695595

RESUMO

The discovery of efficient and stable electrocatalysts for oxygen evolution reaction (OER) in acid is vital for the commercialization of the proton-exchange membrane water electrolyzer. In this work, we demonstrate that short-range Ru atom arrays with near-ideal Ru-Ru interatomic distances and a unique Ru-O hybridization state can trigger direct O*-O* radical coupling to form an intermediate O*-O*-Ru configuration during acidic OER without generating OOH* species. Further, the Ru atom arrays suppress the participation of lattice oxygen in the OER and the dissolution of active Ru. Benefiting from these advantages, the as-designed Ru array-Co3O4 electrocatalyst breaks the activity/stability trade-off that plagues RuO2-based electrocatalysts, delivering an excellent OER overpotential of only 160 mV at 10 mA cm-2 in 0.5 M H2SO4 and outstanding durability during 1500 h operation, representing one of the best acid-stable OER electrocatalysts reported to date. 18O-labeled operando spectroscopic measurements together with theoretical investigations revealed that the short-range Ru atom arrays switched on an oxide path mechanism (OPM) during the OER. Our work not only guides the design of improved acidic OER catalysts but also encourages the pursuit of short-range metal atom array-based electrocatalysts for other electrocatalytic reactions.

7.
Front Pharmacol ; 15: 1374680, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799156

RESUMO

Safflower (Carthamus tinctorius L.), a member of the Asteraceae family, is widely used in traditional herbal medicine. This review summarized agronomic conditions, genetic diversity, clinical application, and phytochemicals and pharmacological properties of safflower. The genetic diversity of the plant is rich. Abundant in secondary metabolites like flavonoids, phenols, alkaloids, polysaccharides, fatty acids, polyacetylene, and other bioactive components, the medicinal plant is effective for treating cardiovascular diseases, neurodegenerative diseases, and respiratory diseases. Especially, Hydroxysafflor yellow A (HYSA) has a variety of pharmacological effects. In terms of treatment and prevention of some space sickness in space travel, safflower could be a potential therapeutic agent. Further studies are still required to support the development of safflower in medicine. Our review indicates that safflower is an important medicinal plant and research prospects regarding safflower are very broad and worthy of further investigation.

8.
J Colloid Interface Sci ; 670: 272-278, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763023

RESUMO

Exploring effective strategies for developing new high-efficiency catalysts for water splitting is essential for advancing hydrogen energy technology. Herein, Co3O4/RuO2 heterojunction interface is construct through ion exchange reaction and pyrolysis. The as-synthesized Co3O4/RuO2-4 exhibits outstanding oxygen evolution reaction (OER) activity at the current density of 100 mA cm-2 with a low overpotential of 276 mV, and remarkable stability (maintaining activity for 60 h at 100 mA cm-2). Experimental results and theoretical calculations reveal that the electrons around the heterogeneous interface transferred from RuO2 to Co3O4, resulting in electron redistribution and optimization of energy barriers for OER intermediates. This unique composite catalyst structure offers a new potential for designing efficient oxygen electrocatalysts at large current density.

9.
Adv Mater ; 36(27): e2401220, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38652510

RESUMO

The development of single-system materials that exhibit both multicolor room-temperature phosphorescence (RTP) and thermally activated delayed fluorescence (TADF) with tunable after glow colors and channels is challenging. In this study, four metal-free carbon dots (CDs) are developed through structural tailoring, and panchromatic high-brightness RTP is achieved via strong chemical encapsulation in urea. The maximum lifetime and quantum yield reaches 2141 ms and 56.55%, respectively. Moreover, CDs-IV@urea, prepared via coreshell interaction engineering, exhibits a dual afterglow of red RTP and green TADF. The degree of conjugation and functional groups of precursors affects the binding interactions of the nitrogen cladding on CDs, which in turn stabilizes triplet energy levels and affects the energy gap between S1 and T1 (ΔEST) to induce multicolor RTP. The enhanced wrapping interaction lowers the ΔEST, promoting reverse intersystem crossing, which leads to phosphorescence and TADF. This strong coreshell interaction fully stabilizes the triplet state, thus stabilizing the material in water, even in extreme environments such as strong acids and oxidants. These afterglow materials are tested in multicolor, time, and temperature multiencryption as well as in multicolor in vivo bioimaging. Hence, these materials have promising practical applications in information security as well as biomedical diagnosis and treatment.

10.
Mol Cell Biochem ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528297

RESUMO

Intermittent fasting remains a safe and effective strategy to ameliorate various age-related diseases, but its specific mechanisms are not fully understood. Considering that transcription factors (TFs) determine the response to environmental signals, here, we profiled the diurnal expression of 600 samples across four metabolic tissues sampled every 4 over 24 h from mice placed on five different feeding regimens to provide an atlas of TFs in biological space, time, and feeding regimen. Results showed that 1218 TFs exhibited tissue-specific and temporal expression profiles in ad libitum mice, of which 974 displayed significant oscillations at least in one tissue. Intermittent fasting triggered more than 90% (1161 in 1234) of TFs to oscillate somewhere in the body and repartitioned their tissue-specific expression. A single round of fasting generally promoted TF expression, especially in skeletal muscle and adipose tissues, while intermittent fasting mainly suppressed TF expression. Intermittent fasting down-regulated aging pathway and upregulated the pathway responsible for the inhibition of mammalian target of rapamycin (mTOR). Intermittent fasting shifts the diurnal transcriptome atlas of TFs, and mTOR inhibition may orchestrate intermittent fasting-induced health improvements. This atlas offers a reference and resource to understand how TFs and intermittent fasting may contribute to diurnal rhythm oscillation and bring about specific health benefits.

11.
J Am Chem Soc ; 146(11): 7658-7667, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38452365

RESUMO

High-power phosphor-converted white light-emitting diodes (hp-WLEDs) have been widely involved in modern society as outdoor lighting sources. In these devices, due to the Joule effect, the high applied currents cause high operation temperatures (>500 K). Under these conditions, most phosphors lose their emission, an effect known as thermal quenching (TQ). Here, we introduce a zero-dimensional (0D) metal halide, Rb3InCl6:xSb3+, as a suitable anti-TQ phosphor offering robust anti-TQ behavior up to 500 K. We ascribe this behavior of the metal halide to two factors: (1) a compensation process via thermally activated energy transfer from structural defects to emissive centers and (2) an intrinsic structural rigidity of the isolated octahedra in the 0D structure. The anti-TQ phosphor-based WLEDs can stably work at a current of 2000 mA. The low synthesis cost and nontoxic composition reported here can herald a new generation of anti-TQ phosphors for hp-WLED.

12.
Haematologica ; 109(7): 2092-2110, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38385270

RESUMO

t(1;19)(q23;p13) is one of the most common translocation genes in childhood acute lymphoblastic leukemia (ALL) and is also present in acute myeloid leukemia (AML) and mixed-phenotype acute leukemia (MPAL). This translocation results in the formation of the oncogenic E2A-PBX1 fusion protein, which contains a trans-activating domain from E2A and a DNA-binding homologous domain from PBX1. Despite its clear oncogenic potential, the pathogenesis of E2A-PBX1 fusion protein is not fully understood (especially in leukemias other than ALL), and effective targeted clinical therapies have not been developed. To address this, we established a stable and heritable zebrafish line expressing human E2A-PBX1 (hE2A-PBX1) for high-throughput drug screening. Blood phenotype analysis showed that hE2A-PBX1 expression induced myeloid hyperplasia by increasing myeloid differentiation propensity of hematopoietic stem cells (HSPC) and myeloid proliferation in larvae, and progressed to AML in adults. Mechanistic studies revealed that hE2A-PBX1 activated the TNF/IL-17/MAPK signaling pathway in blood cells and induced myeloid hyperplasia by upregulating the expression of runx1. Interestingly, through high-throughput drug screening, three small molecules targeting the TNF/IL-17/MAPK signaling pathway were identified, including OUL35, KJ-Pyr-9, and CID44216842, which not only alleviated the hE2A-PBX1-induced myeloid hyperplasia in zebrafish but also inhibited the growth and oncogenicity of human pre-B ALL cells with E2A-PBX1. Overall, this study provides a novel hE2APBX1 transgenic zebrafish leukemia model and identifies potential targeted therapeutic drugs, which may offer new insights into the treatment of E2A-PBX1 leukemia.


Assuntos
Proteínas de Fusão Oncogênica , Peixe-Zebra , Animais , Humanos , Animais Geneticamente Modificados , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Proteínas de Homeodomínio , Leucemia/genética , Leucemia/metabolismo , Leucemia/tratamento farmacológico , Leucemia/patologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
13.
Nano Lett ; 24(9): 2904-2911, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38385631

RESUMO

Carbon dots (CDs) are promising luminescent emission layer materials for next generation electroluminescent light emitting diodes (EL-LEDs) due to their many advantages, such as environmental friendliness, low cost, and high stability. However, limited by the spin-forbidden properties of the triplet transition, it is difficult to improve the external quantum efficiency (EQE) of fluorescent CDs-based EL-LEDs. Meanwhile, traditional thermally activated delayed fluorescent (TADF) CDs prepared using coating strategies are difficult to utilize in EL-LEDs due to the nonconductivity of the coating agent. Herein, we successfully developed matrix-free TADF CDs with yellow emission and achieved a device EQE of 5.68%, which is the highest value reported in CDs-based EL-LEDs. In addition, we also developed white EL-LEDs with an EQE of 1.70%. This study highlights the importance of interactions between precursors in modulating the electroluminescence properties of TADF emitters and provides an effective design principle for matrix-free TADF CDs.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38401090

RESUMO

Objective: To investigate the impact of comprehensive health education on insulin therapy outcomes in diabetic patients. Methods: A total of 130 diabetes mellitus patients admitted to our hospital between January 2020 and January 2023 were enrolled. We used a randomization method to divide participants into two groups, one of which received the "admission-discharge-home follow-up" comprehensive health education program and the other which did not. They were randomly divided into an observation group and a control group (65 patients in each). The control group received conventional education, while the observation group received additional one-stop health education involving "admission-discharge-family follow-up." Various parameters, including 2-hour postprandial blood glucose (2hPG), fasting plasma glucose (FPG), glycated hemoglobin (HbA1c), insulin injection compliance, insulin standard injection mastery, and quality of life (assessed using the Insulin Therapy Related Quality of Life Questionnaire, ITR-QOL-CV), were compared between the two groups. Results: The study's key findings highlight the significant effects of a comprehensive health education program on key outcomes such as improving insulin injection compliance, improving glycemic control, and improving quality of life in patients with diabetes. Before the intervention, 2hPG, FPG, and HbA1c levels were similar in both groups (P > .05). Following the intervention, these indicators decreased in both groups, with significantly lower levels observed in the observation group (P < .05). Insulin injection compliance was comparable between the groups before the intervention (P > .05), but it increased in both groups post-intervention, with higher compliance observed in the observation group (P < .05). Similarly, scores from the insulin standard injection mastery questionnaire and ITR-QOL-CV were enhanced in both groups after the intervention, with higher scores in the observation group compared to the control group (P < .05). Conclusion: The implementation of one-stop health education involving "admission-discharge-family follow-up" led to improved insulin injection effectiveness, blood glucose control, compliance, insulin standard injection mastery, and overall quality of life in diabetic patients. These significant improvements have important clinical implications for patients with diabetes, as more efficient and consistent use of insulin injections will help to better control blood sugar levels, reducing patients' symptoms and risk of complications. For health care providers, these findings underscore the importance of providing comprehensive health education programs to improve outcomes and overall care for patients with diabetes.

15.
Food Chem ; 445: 138765, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367562

RESUMO

This study aimed to reveal the effects and regulatory mechanism of dietary NDF on the performance of pigs by multi-omics analysis. Results showed that 16 % dietary NDF significantly improved meat quality, increased flavor amino acid content, and reduced backfat thickness and the feed-to-gain ratio. 16S rDNA sequencing showed that 16 % NDF significantly increased the abundance of Akkermansia, Lachnoclostridium, and Ruminococcus. Transcript analysis showed that genes related to muscle development and lipid metabolism were significantly modified. Metabonomic analysis showed that 16 % NDF significantly increased amino and fatty acid related metabolites. Correlation analysis suggested that 16 % NDF treatment may alter the gut microbiota and metabolites, regulate the expression of genes related to lipid and amino metabolism, and ultimately affect the flavor and performance of pigs. This study provides a novel understanding about the effect and regulatory mechanism of NDF supplements on the finishing pigs and a relevant reference for the improvement of diet formulation.


Assuntos
Aminoácidos , Detergentes , Suínos/genética , Animais , Aminoácidos/metabolismo , Multiômica , Composição Corporal , Suplementos Nutricionais , Dieta/veterinária , Carne/análise , Ração Animal/análise
16.
Small ; 20(27): e2309633, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38282381

RESUMO

Low-cost bifunctional electrocatalysts capable of efficiently driving the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are needed for the growth of a green hydrogen economy. Herein, a Ru/Co3O4 heterojunction catalyst rich in oxygen vacancies (VO) and supported on carbon cloth (RCO-VO@CC) is prepared via a solid phase reaction (SPR) strategy. A RuO2/Co9S8@CC precursor (ROC@CC) is first prepared by loading Co9S8 nanosheets onto CC, following the addition of RuO2 nanoparticles (NPs). After the SPR process in an Ar atmosphere, Ru/Co3O4 heterojunctions with abundant VO are formed on the CC. The compositionally optimized RCO-VO@CC electrocatalyst with a Ru content of 0.55 wt.% exhibits very low overpotential values of 11 and 253 mV at 10 mA cm-2 for HER and OER, respectively, in 1 m KOH. Further, a low cell voltage of only 1.49 V is required to achieve a current density of 10 mA cm-2. Density functional theoretical calculations verify that the outstanding bifunctional electrocatalytic performance originates from synergistic charge transfer between Ru metal and VO-rich Co3O4. This work reports a novel approach toward a high-efficiency HER/OER electrocatalyst for energy storage and conversion.

17.
Chemistry ; 30(15): e202303422, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38240191

RESUMO

The electrocatalytic CO2 reduction (ECR) to produce valuable fuel is a promising process for addressing atmospheric CO2 emissions and energy shortages. In this study, Cl-anion doped cadmium sulfide structures were directly fabricated on a nickel foam surface (Cl/CdS-NF) using an in situ hydrothermal method. The Cl-anion doping could significantly improve ECR activity for CO production in ionic liquid and acetonitrile mixed solution, compared to pristine CdS. The highest Faradaic efficiency of CO is 98.1 % on a Cl/CdS-NF-2 cathode with an excellent current density of 137.0 mA cm-2 at -2.25 V versus ferrocene/ferrocenium (Fc/Fc+ , all potentials are versus Fc/Fc+ in this study). In particular, CO Faradaic efficiencies remained above 80 % in a wide potential range of -2.05 V to -2.45 V and a maximum partial current density (192.6 mA cm-2 ) was achieved at -2.35 V. The Cl/CdS-NF-2, with appropriate Cl anions, displayed abundant active sites and a suitable electronic structure, resulting in outstanding ECR activity. Density functional theory calculations further demonstrated that Cl/CdS is beneficial for increasing the adsorption capacities of *COOH and *H, which can enhance the activity of the ECR toward CO and suppress the hydrogen evolution reaction.

18.
J Med Chem ; 67(3): 1861-1871, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38247270

RESUMO

Fluorescence and photoacoustic (PA) imaging in the second near-infrared (NIR-II, 1000-1700 nm) window has garnered massive interest owing to high maximum permissible exposure of light, reduced autofluorescence, and improved deep penetration. However, active targeted NIR-II photoacoustic/NIR-IIa fluorescence imaging of glioma under NIR-II excitation has been seldom reported, which is partly ascribable to the lack of suitable materials. In this study, a small-molecule-based αvß3-targeted NIR-II photoacoustic/NIR-IIa fluorescent probe IR-32p was generated and subsequently evaluated in U87MG tumor-bearing mice excited with NIR-I and NIR-II light. Exceptional dual-modal imaging properties such as good tumor uptake, high targeting specificity, and high tumor contrast were achieved in an orthotopic glioma model under 1020/1064 nm excitation, exhibiting a superior imaging depth of glioma through the skull. Our study introduces an outstanding dual-modal contrast agent with NIR-II absorption and confirms the superiority of NIR-II excitation over NIR-I in in vivo NIR-II/PA imaging.


Assuntos
Glioma , Técnicas Fotoacústicas , Camundongos , Animais , Corantes Fluorescentes , Técnicas Fotoacústicas/métodos , Glioma/diagnóstico por imagem , Imagem Óptica , Análise Espectral
19.
Angew Chem Int Ed Engl ; 63(9): e202314383, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38216536

RESUMO

Directional organic transformation via a green, sustainable catalytic reaction has attracted a lot of attention. Herein, we report a photoelectrochemical approach for highly selective epoxidation of alkenes in a salt solution using Co2 (OH)3 Cl (CoOCl) as a bridge of photo-generated charge, where the lattice Cl- of CoOCl can be oxidized to generate HClO by the photo-generated holes of BiVO4 photoanode and be spontaneously recovered by Cl- of a salt solution, which then oxidizes the alkenes into the corresponding epoxides. As a result, a series of water-soluble alkenes, including 4-vinylbenzenesulfonic acid sodium, 2-methyl-2-propene-1-sulfonic acid sodium, and 3-methyl-3-buten-1-ol can be epoxidized with near 100 % conversion rate and selectivity. Through further inserting a MoOx protection layer between BiVO4 and CoOCl, the stability of CoOCl-MoOx /BiVO4 can be maintained for at least 120 hours. This work opens an avenue for solar-driven organic epoxidation with a possibility of on-site reaction around the abundant ocean.

20.
Chem Soc Rev ; 52(22): 8005-8058, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37880991

RESUMO

Afterglow materials are attracting widespread attention owing to their distinctive and long-lived optical emission properties which create exciting opportunities in various fields. Recent research has led to the discovery of many new afterglow materials featuring high photoluminescence quantum yields (PLQY) and lifetimes of up to several hours under ambient conditions. Afterglow materials are typically categorized according to their luminescence mechanism, such as long-persistent luminescence (LPL), room temperature phosphorescence (RTP), or thermally activated delayed fluorescence (TADF). Through rational design and novel synthetic strategies to modulate spin-orbit coupling (SOC) and populate triplet exciton states (T1), luminophores with long lifetimes and bright afterglow characteristics can be realized. Initial research towards afterglow materials focused mainly on pure inorganic materials, many of which possessed inherent disadvantages such as metal toxicity or low energy emissions. In recent years, organic-inorganic hybrid afterglow materials (OIHAMs) have been developed with high PLQY and long lifetimes. These hybrid materials exploit the tunable structure and easy processing of organic molecules, as well as enhanced SOC and intersystem crossing (ISC) processes involving heavy atom dopants, to achieve excellent afterglow performance. In this review, we begin by briefly discussing the structure and composition of inorganic and organic-inorganic hybrid afterglow materials, including strategies for regulating their lifetime, PLQY and luminescence wavelength. The specific advantages of organic-inorganic hybrid afterglow materials, including low manufacturing costs, diverse molecular/electronic structures, tunable structures and optical properties, and compatibility with a variety of substrates, are emphasized. Subsequently, we discuss in detail the fundamental mechanisms used by afterglow materials, their classification, design principles, and end applications (including sensing, anticounterfeiting, and photoelectric devices, among others). Finally, existing challenges and promising future directions are discussed, laying a platform for the design of afterglow materials for specific applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA