RESUMO
Renal cell carcinoma (RCC) is characterized by high mortality and morbidity rates. Vav guanine nucleotide exchange factors (VAVs), crucial for signal transduction between cell membrane receptors and intracellular mediators, have been implicated in carcinogenesis. However, their potential prognostic value in RCC remains unclear. The impact of 150 common VAV polymorphisms on RCC risk and survival was investigated in a cohort of 630 individuals. Publicly available gene expression datasets were utilized to analyze VAV gene expression in relation to patient outcomes. The VAV3 rs17019888 polymorphism was significantly associated with RCC risk and overall survival after adjusting for false discovery rates. Expression quantitative trait loci analysis revealed that the risk allele of rs17019888 is linked to reduced VAV3 expression. Analysis of 19 kidney cancer gene expression datasets revealed lower VAV3 expression in RCC tissues compared to normal tissues, with higher expression correlating with better prognosis. Gene set enrichment analysis demonstrated that VAV3 negatively regulates the ubiquitin-proteasome system, extracellular matrix and membrane receptors, inflammatory responses, matrix metalloproteinases, and cell cycle pathways. Furthermore, elevated VAV3 expression was associated with increased infiltration of B cells, macrophages, and neutrophils into the RCC tumor microenvironment. Our findings suggest that VAV3 gene variants influence RCC risk and survival, contributing to a favorable prognosis in RCC.
RESUMO
PURPOSE: The formalin-ethyl acetate (FEA) concentration method is commonly used in routine clinical practice to detect parasite eggs in feces. This procedure involves extraction of oil with the organic solvent ethyl acetate (EA), which reduces fecal sediment and provides a cleaner background for microscopic analysis. However, clinically, some sediment failed to float after EA treatment. METHODS: Hexane, commonly used in the food oil extraction from oilseeds did not float the feces. Gas chromatography-mass spectrometry (GC-MS) analysis showed that neither the amount of the oil nor the classes of the oil determined was differed whether hexane or EA was used to float the feces. Oil red, Bodipy and Calcofluor staining showed that the unabsorbed oil droplets in the fecal sediment were trapped within the leaf structure. HCl or acetic acid was added to see if the acid residue could dissolve the cellulose of the leaf to promote the bulk float. RESULTS: Our result showed that the fecal bulk contained the loosened mesophyll cell wall. The addition of acid residues improved fecal bulk float. The proximity of cellulose fiber to EA, but not hexane, may enhance the efficacy of oil extraction from cellulose. CONCLUSION: This is the first report that the interaction of cellulose with ethyl acetate in fecal solution has an effect on bulk float. This study improves the understanding of fecal bulk flotation and may assist in the visualization of parasite eggs in clinical practice with non-floating fecal samples in the FEA concentration method.
Assuntos
Acetatos , Fezes , Formaldeído , Cromatografia Gasosa-Espectrometria de Massas , Animais , Fezes/parasitologia , Cromatografia Gasosa-Espectrometria de Massas/métodos , Contagem de Ovos de Parasitas/métodos , HumanosRESUMO
One-carbon metabolism plays a crucial role in tumorigenesis as it supplies the one-carbon units necessary for nucleotide synthesis, epigenetic regulation, and redox metabolism, ensuring the rapid proliferation of cancer cells. However, their roles in prostate cancer progression remain poorly understood. In this study, we investigated the association between genetic variants in the one-carbon metabolism pathway and clinical outcomes in patients receiving androgen deprivation therapy for prostate cancer. The associations of 130 single-nucleotide polymorphisms located within 14 genes involved in the one-carbon metabolism pathway with cancer-specific survival (CSS), overall survival, and progression-free survival were assessed using Cox regression in 630 patients with prostate cancer. Subsequently, functional studies were performed using prostate cancer cell lines. After adjusting for covariates and multiple testing, MTHFD1L rs2073190 was found to be significantly associated with CSS (P = 0.000184). Further pooled analysis of multiple datasets demonstrated that MTHFD1L was upregulated in prostate cancer and increased MTHFD1L expression was positively correlated with tumor aggressiveness and poor patient prognosis. Functionally, MTHFD1L knockdown suppressed prostate cancer cell proliferation and colony formation. RNA sequencing and pathway analysis revealed that differentially expressed genes were predominantly enriched in the cell cycle pathway. In conclusion, genetic variants in MTHFD1L of one-carbon metabolism may serve as promising predictors, and our findings offer valuable insights into the underlying genetic mechanisms of prostate cancer progression.
RESUMO
The skin of Arachis hypogaea L. (peanut or groundnut) is a rich source of polyphenols, which have been shown to exhibit a wider spectrum of noteworthy biological activities, including anticancer effects. However, the anticancer activity of peanut skin extracts against melanoma and colorectal cancer (CRC) cells remains elusive. In this study, we systematically investigated the cytotoxic, antiproliferative, pro-apoptotic, and anti-migration effects of peanut skin ethanolic extract and its fractions on melanoma and CRC cells. Cell viability results showed that the ethyl acetate fraction (AHE) of peanut skin ethanolic crude extract and one of the methanolic fractions (AHE-2) from ethyl acetate extraction exhibited the highest cytotoxicity against melanoma and CRC cells but not in nonmalignant human skin fibroblasts. AHE and AHE-2 effectively modulated the cell cycle-related proteins, including the suppression of cyclin-dependent kinase 4 (CDK4), cyclin-dependent kinase 6 (CDK6), phosphorylation of Retinoblastoma (p-Rb), E2F1, Cyclin A, and activation of tumor suppressor p53, which was associated with cell cycle arrest and paralleled their antiproliferative efficacies. AHE and AHE-2 could also induce caspase-dependent apoptosis and inhibit migration activities in melanoma and CRC cells. Moreover, it is noteworthy that autophagy, manifested by microtubule-associated protein light chain 3B (LC3B) conversion and the aggregation of GFP-LC3, was detected after AHE and AHE-2 treatment and provided protective responses in cancer cells. Significantly, inhibition of autophagy enhanced AHE- and AHE-2-induced cytotoxicity and apoptosis. Together, these findings not only elucidate the anticancer potential of peanut skin extracts against melanoma and CRC cells but also provide a new insight into autophagy implicated in peanut skin extracts-induced cancer cell death.
Assuntos
Acetatos , Arachis , Melanoma , Humanos , Linhagem Celular Tumoral , Extratos Vegetais/farmacologia , Apoptose , AutofagiaRESUMO
BACKGROUND: Treatment failure following androgen deprivation therapy (ADT) presents a significant challenge in the management of advanced prostate cancer. Thus, understanding the genetic factors influencing this process could facilitate the development of personalized treatments and innovative therapeutic strategies. The phosphoinositide 3-kinase (PI3K)/AKT signaling pathway plays a pivotal role in controlling cell growth and tumorigenesis. We hypothesized that genetic variants within this pathway may affect the clinical outcomes of patients undergoing ADT for prostate cancer. METHODS: We genotyped 399 single-nucleotide polymorphisms (SNPs) across 28 core PI3K/AKT pathway genes in a cohort of 630 patients with prostate cancer undergoing ADT. We assessed the potential association of the SNPs with patient survival. Functional analyses of the implicated genes were also performed to evaluate their effects on prostate cancer. RESULTS: After multivariate Cox regression analysis and multiple testing correction, GABRB3 rs12591845 exhibited the most significant association with both overall and cancer-specific survivals (P < 0.003). A comprehensive pooled analysis of 16 independent gene expression datasets revealed elevated expression of GABRB3 in prostate cancer tissues compared to that in normal tissues (P < 0.001). Furthermore, gene set enrichment analysis unveiled differential enrichment of pathways such as myogenesis, interferon γ and α responses, and the MYC proto-oncogene pathway in tumors with elevated GABRB3 expression, implying a role for GABRB3 in prostate cancer. CONCLUSION: Our results suggest that rs12591845 could potentially serve as a valuable prognostic indicator for patients undergoing ADT. The potential role of GABRB3 in promoting prostate tumorigenesis is also highlighted.
Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Antagonistas de Androgênios/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/uso terapêutico , Biomarcadores , Carcinogênese , Receptores de GABA-A/uso terapêuticoRESUMO
The renin-angiotensin-aldosterone system (RAAS) plays a crucial role in maintaining various physiological processes in the body, including blood pressure regulation, electrolyte balance, and overall cardiovascular health. However, any compounds or drugs known to perturb the RAAS might have an additional impact on transmembrane ionic currents. In this retrospective review article, we aimed to present a selection of chemical compounds or medications that have long been recognized as interfering with the RAAS. It is noteworthy that these substances may also exhibit regulatory effects in different types of ionic currents. Apocynin, known to attenuate the angiotensin II-induced activation of epithelial Na+ channels, was shown to stimulate peak and late components of voltage-gated Na+ current (INa). Esaxerenone, an antagonist of the mineralocorticoid receptor, can exert an inhibitory effect on peak and late INa directly. Dexamethasone, a synthetic glucocorticoid, can directly enhance the open probability of large-conductance Ca2+-activated K+ channels. Sparsentan, a dual-acting antagonist of the angiotensin II receptor and endothelin type A receptors, was found to suppress the amplitude of peak and late INa effectively. However, telmisartan, a blocker of the angiotensin II receptor, was effective in stimulating the peak and late INa along with a slowing of the inactivation time course of the current. However, telmisartan's presence can also suppress the erg-mediated K+ current. Moreover, tolvaptan, recognized as an aquaretic agent that can block the vasopressin receptor, was noted to suppress the amplitude of the delayed-rectifier K+ current and the M-type K+ current directly. The above results indicate that these substances not only have an interference effect on the RAAS but also exert regulatory effects on different types of ionic currents. Therefore, to determine their mechanisms of action, it is necessary to gain a deeper understanding.
Assuntos
Angiotensina II , Sistema Renina-Angiotensina , Angiotensina II/farmacologia , Pressão Sanguínea , Glucocorticoides , Receptor de Endotelina A , Telmisartan , HumanosRESUMO
Apical-basal cell polarity must be tightly controlled for epithelial cyst and tubule formation, and these are important functional units in various epithelial organs. Polarization is achieved through the coordination of several molecules that divide cells into an apical domain and a basolateral domain, which are separated from tight and adherens junctions. Cdc42 regulates cytoskeletal organization and the tight junction protein ZO-1 at the apical margin of epithelial cell junctions. MST kinases control organ size through the regulation of cell proliferation and cell polarity. For example, MST1 relays the Rap1 signal to induce cell polarity and adhesion of lymphocytes. Our previous study showed that MST3 was involved in E-cadherin regulation and migration in MCF7 cells. In vivo, MST3 knockout mice exhibited higher ENaC expression at the apical site of renal tubules, resulting in hypertension. However, it was not clear whether MST3 was involved in cell polarity. Here, control MDCK cells, HA-MST3 and HA-MST3 kinase-dead (HA-MST3-KD) overexpressing MDCK cells were cultured in collagen or Matrigel. We found that the cysts of HA-MST3 cells were fewer and smaller than those of control MDCK cells; ZO-1 was delayed to the apical site of cysts and in cell-cell contact in the Ca2+ switch assay. However, HA-MST3-KD cells exhibited multilumen cysts. Intensive F-actin stress fibers were observed in HA-MST3 cells with higher Cdc42 activity; in contrast, HA-MST3-KD cells had lower Cdc42 activity and weaker F-actin staining. In this study, we identified a new MST3 function in the establishment of cell polarity through Cdc42 regulation.
Assuntos
Cistos , Células Epiteliais , Animais , Camundongos , Actinas/metabolismo , Polaridade Celular/fisiologia , Cistos/metabolismo , Células Epiteliais/metabolismo , Junções Intercelulares/metabolismo , Transdução de Sinais , Junções Íntimas/metabolismoRESUMO
The discovery of a series of coupling reactions between various building blocks has driven the development of porous organic polymers, but the common usage of expensive and air-sensitive organometallic catalysts and complex procedures in harsh syntheses has limited their expansion. A microporous hypercrosslinked polymer (HCP) was synthesized by polymerizing a naphthalene monomer and a 1,4-dimethoxybenzene crosslinker using Friedel-Crafts alkylation over an FeCl3 catalyst and imprinted with 3,5-dinitrosalicylic acid (DNS). The DNS-molecularly-imprinted HCPs (MIHCPs) were characterized as having IUPAC Type I mesoporosity, a specific surface area of 1134 m2 g-1, a monolayer adsorption capacity of 116 cm2 g-1, pore sizes ranging from 5 to 8.5 Å, amorphous frameworks, and distinctive absorption and emission bands by N2 adsorption/desorption analyses, scanning and transmission electron microscopies, and FTIR, UV-Vis, and fluorescence spectrometries. The π-conjugated imprinted framework endowed the MIHCPs with 405-nm fluorescent emission at a 330-nm excitation and dynamic quenching, which was confirmed by changes in fluorescence lifetime and followed a linear Stern-Volmer plot against 1.0-200 µM DNS template molecules under optimized conditions of a pH 7.0 buffer, an MIHCP concentration of 125 µg mL-1, and a 3.0-min equilibration time. The MIHCPs exhibited a high imprinted factor of 8.7 against nonimprinted HCP and a selectivity of 8.63 against reduced DNS, which enabled fluorometric detection of DNS molecules produced by the hydrolysis of starch with microbial, salivary, and pancreatic α-amylases and the subsequent redox incubation with the DNS oxidant. The fluorometric measurement of α-amylase activity was higher in accuracy and precision (RSD: 2.6-2.8% vs. 3.9-4.0%) than conventional UV-Vis spectrometry because the excellent fluorescent sensitivity and imprinting selectivity of the MIHCP probes enabled the use of higher dilution factors with weaker matrix effects.
Assuntos
Impressão Molecular , Polímeros , Polímeros/química , Impressão Molecular/métodos , Espectrometria de Fluorescência/métodos , Corantes , alfa-Amilases , AdsorçãoRESUMO
BACKGROUND: Immunodeficiencies are genetic diseases known to predispose an individual to cancer owing to defective immunity towards malignant cells. However, the link between immunodeficiency and prostate cancer progression remains unclear. Therefore, the aim of this study was to evaluate the effects of common genetic variants among eight immunodeficiency pathway-related genes on disease recurrence in prostate cancer patients treated with radical prostatectomy. METHODS: Genetic and bioinformatic analyses on 19 haplotype-tagging single-nucleotide polymorphisms in eight immunodeficiency pathway-related genes were conducted in 458 patients with prostate cancer after receiving radical prostatectomy. Furthermore, the TNFRSF13B was knocked down in 22Rv1 and PC-3 human prostate cancer cell lines via transfecting short hairpin RNAs and cell proliferation and colony formation assays were performed. The molecular mechanisms underlying the effects of TNFRSF13B were further explored by microarray gene expression profiling. RESULTS: TNFRSF13B rs4792800 was found to be significantly associated with biochemical recurrence even after adjustment for clinical predictors and false discovery rate correction (adjusted hazard ratio 1.78, 95% confidence interval 1.16-2.71, p = 0.008), and the G allele was associated with higher TNFRSF13B expression (p = 0.038). Increased TNFRSF13B expression suggested poor prognosis in four independent prostate cancer datasets. Furthermore, silencing TNFRSF13B expression resulted in decreased colony formation of 22Rv1 and PC-3 cells through modulating the cell cycle and p53 signalling pathways. CONCLUSIONS: The present study suggests the potential role of immunodeficiency pathway-related genes, primarily TNFRSF13B, in prostate cancer progression.
RESUMO
DNA damage repair is frequently dysregulated in advanced prostate cancer and has been linked to cancer susceptibility and survival outcomes. The aim of this study is to assess the influence of genetic variants in DNA damage repair pathways on the prognosis of prostate cancer. Specifically, 167 single nucleotide polymorphisms (SNPs) in 18 DNA damage repair pathway genes were assessed for association with cancer-specific survival (CSS), overall survival (OS), and progression-free survival (PFS) in a cohort of 630 patients with advanced prostate cancer receiving androgen deprivation therapy. Univariate analysis identified four SNPs associated with CSS, four with OS, and two with PFS. However, only MSH2 rs1400633 C > G showed a significant association upon multivariate analysis and multiple testing adjustments (hazard ratio = 0.75, 95% confidence interval = 0.63-0.90, p = 0.002). Furthermore, rs1400633 risk allele C increased MSH2 expression in the prostate and other tissues, which correlated with more aggressive prostate cancer characteristics. A meta-analysis of 31 gene expression datasets revealed significantly higher MSH2 expression in prostate cancer than in normal tissues (p < 0.001), and this high expression was associated with a poor prognosis of prostate cancer (p = 0.002). In summary, we identified MSH2 rs1400633 as an independent prognostic biomarker for prostate cancer survival, and the association of MSH2 with cancer progression lends relevance to our findings.
RESUMO
Prostate and breast cancers are hormone-related malignancies and are characterized by a complex interplay of hundreds of susceptibility loci throughout the genome. Prostate cancer could be inhibited by eliminating androgens through castration or estrogen administration, thus facilitating long-term treatment of prostate cancer; however, the role of estrogen in prostate cancer remains unclear. This study aimed to determine whether polygenic risk scores (PRSs) comprising combinations of genome-wide susceptibility variants influence the clinical outcomes of prostate cancer patients. The study subjects were recruited from four medical centers in Taiwan, and genome-wide genotyping data were obtained from 643 prostate cancer patients. We derived the PRS for prostate cancer (PRS-PC) and for breast cancer (PRS-BC) for each patient. The association between the PRS-PC/PRS-BC at the age of prostate cancer onset and recurrence within seven years was evaluated using a regression model adjusted for population stratification components. A higher PRS-PC was associated with an earlier onset age for prostate cancer (beta in per SD increase in PRS = -0.89, P = 0.0008). In contrast, a higher PRS-BC was associated with an older onset age for prostate cancer (beta = 0.59, P = 0.02). PRS-PC was not associated with the risk of recurrence (hazard ratio = 1.03, P = 0.67), whereas a higher PRS-BC was associated with a low recurrence risk (hazard ratio = 0.86, P = 0.03). These results indicate that the genetic predisposition to breast cancer is associated with a low risk of prostate cancer recurrence. Further studies are warranted to explore the role of breast cancer susceptibility variants and estrogen signaling in prostate cancer progression.
RESUMO
Neuregulins (NRGs) activate receptor tyrosine kinases of the ErbB family, and play essential roles in the proliferation, survival, and differentiation of normal and malignant tissue cells. We hypothesized that genetic variants of NRG signalling pathway genes may influence treatment outcomes in prostate cancer. To test this hypothesis, we performed a comprehensive analysis to evaluate the associations of 459 single-nucleotide polymorphisms in 19 NRG pathway genes with cancer-specific survival (CSS), overall survival (OS), and progression-free survival (PFS) in 630 patients with prostate cancer receiving androgen-deprivation therapy (ADT). After multivariate Cox regression and multiple testing correction, we found that NRG1 rs144160282 C > T is significantly associated with worsening CSS, OS, and PFS during ADT. Further analysis showed that low expression of NRG1 is closely related to prostate cancer, as indicated by a high Gleason score, an advanced stage, and a shorter PFS rate. Meta-analysis of 16 gene expression datasets of 1,081 prostate cancer samples and 294 adjacent normal samples indicate lower NRG1 expression in the former compared with the latter (p < 0.001). These results suggest that NRG1 rs144160282 might be a prognostic predictor of the efficacy of ADT. Further studies are required to confirm the significance of NRG1 as a biomarker and therapeutic target for prostate cancer.
RESUMO
Diltiazem, which is a calcium channel blocker, is involved in the formation of covalent organic frameworks (COFs) through the Schiff base reaction of tetrakis (4-aminophenyl)-porphine (TAPP) and dihydroxynaphthalene-dicarbaldehyde (DHNDC) and the next enol-to-keto tautomerization. The diltiazem-imprinted COFs (DICOFs) were optimally formed using Sc(OTf)3 as the catalyst, TAPP/DHNDC/diltiazem in a molar ratio of 2/3/4, N-methylpyrrolidone/mesitylene (v/v = 3/5) as the porogen, and a 1-h reaction with a high imprinting factor of 10.5 compared to the nonimprinted counterparts (NICOFs). The optimized DICOF exhibited a more amorphous XRD pattern, a larger surface area (1650 vs. 930 m2/g), a larger pore volume (1.33 vs. 0.75 cm3/g), and a finer porous SEM feature than NICOF. The selectivity of NICOF toward diltiazem and diazepam at 250 nM (α = 1.03, RSD = 1.3%) was smaller than the selectivity of DICOF (α = 2.94, RSD = 1.6%). The diltiazem samples (5.0-300 ng mL-1) dynamically quenched the fluorescence of 15 µg/mL DICOF in 50 mM phosphate buffer at pH 6.5 at 8.0 min equilibrium; thus, Stern-Volmer plots were linearly constructed for sensing diltiazem with an LOD of 3.4 ng mL-1 and an LOQ of 10.2 ng mL-1. According to the plots, 30 ng mL-1 diltiazem solutions that were diluted from 30 mg-specified tablets had an average measured concentration of 29.5 ng mL-1 (σ = 1.3% and n = 5). In addition to application as fluorescent sensors, DICOFs (30 mg) could be used as dispersive extractants to recover 95.2% of 0.6 ng mL-1 diltiazem from 25 mL phosphate buffer with quadruplicate uses of 0.5 mL methanol/acetic acid (v/v = 9/1) as the eluent. Langmuir and pseudo-second-order models were fitted to the isothermal and kinetic sorption mechanisms, respectively. The maximum sorption capacity of DICOF was ten times larger than that of NICOF (156 vs. 15.2 mg/g). The interday recoveries of 0.6 ng mL-1 spiked in 20-fold diluted human urine, and 60-fold diluted human serum were 93.2% and 90.6%, respectively.
RESUMO
BACKGROUND/AIM: Heterogeneous nuclear ribonucleoproteins (hnRNPs) contribute to multiple cellular functions including RNA splicing, stabilization, transcriptional and translational regulation, and signal transduction. However, the prognostic importance of genetic variants of hnRNP genes in clinical outcomes of prostate cancer remains to be elucidated. PATIENTS AND METHODS: We studied the association of 78 germline single-nucleotide polymorphisms (SNPs) in 23 hnRNP genes with the overall survival (OS), cancer-specific survival (CSS), and progression-free survival (PFS) in 630 patients with prostate cancer receiving androgen-deprivation therapy (ADT). RESULTS: PTBP1 rs10420407 was the most significant SNP (false discovery rate q=0.003) and carriers of the A allele exhibited poor OS, CSS, and PFS. Multivariate Cox analysis confirmed PTBP1 rs10420407 A allele was an independent negative prognostic factor for OS and PFS. Expression quantitative trait loci analysis showed that the rs10420407 A allele had a trend towards increased PTBP1 mRNA expression, and higher expression was correlated with prostate cancer aggressiveness and poor patient prognosis. Meta-analysis of 16 independent studies further indicated a tumorigenic effect of PTBP1, with a higher expression in prostate cancers than in adjacent normal tissues (p<0.001). CONCLUSION: Our data suggest that PTBP1 rs10420407 may influence patient response to ADT, and PTBP1 may be involved in the pathogenesis of prostate cancer progression.
Assuntos
Antagonistas de Androgênios/uso terapêutico , Ribonucleoproteínas Nucleares Heterogêneas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Idoso , Antagonistas de Androgênios/farmacologia , Variação Genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Prognóstico , Neoplasias da Próstata/metabolismoRESUMO
AIMS: The mitogen-activated protein kinase (MAPK) cascades integrate various upstream signals to regulate many cellular functions, including proliferation, differentiation, and survival. Dysregulation of these pathways has been implicated in the occurrence and progression of a variety of cancers. MAIN METHODS: This study aimed to assess the association of 192 single nucleotide polymorphisms in 22 MAPK cascade genes with renal cell carcinoma (RCC) risk and survival in 312 patients and 318 controls. KEY FINDINGS: After multiple testing correction and multivariate analysis, the minor T allele of MAPK10 rs12648265 remained associated with a lower risk of RCC (adjusted odds ratio 0.64, 95% confidence interval 0.50-0.82, P = 0.000426) and metastasis (adjusted hazard ratio 0.50, 95% confidence interval 0.30-0.82, P = 0.006). Presence of the rs12648265 T allele demonstrated a trend towards being associated with increased MAPK10 expression, and meta-analysis of four RCC datasets indicated that high MAPK10 expression is associated with a favourable prognosis. Furthermore, activation of MAPK10 by the potent agonist anisomycin inhibited RCC cell growth in vitro, suggesting an involvement of MAPK10 in RCC progression. SIGNIFICANCE: In conclusion, MAPK10 may be a meaningful biomarker and a potential therapeutic target in RCC.
Assuntos
Carcinoma de Células Renais/genética , Predisposição Genética para Doença/genética , Neoplasias Renais/genética , Proteína Quinase 10 Ativada por Mitógeno/genética , Polimorfismo de Nucleotídeo Único/genética , Idoso , Western Blotting , Estudos de Casos e Controles , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
Timolol accompanied the formation of fluorescent ß-ketoenamine-linked covalent organic frameworks (COFs) via the Sc(Tof)3-catalyzed condensation of derivated carbaldehyde and hydrazide in a 1,4-dioxane/mesitylene porogen to construct timolol-imprinted COFs (TICOFs). With high imprinting factors, the synthesis-optimized TICOFs were characterized by fluorescence, UV-Vis spectrometry, X-ray diffraction, N2 adsorption/desorption analyses, scanning electron microscopy, and FTIR spectrometry. The TICOF fluorescence measured at 390 nm/510 nm is dynamically quenched by timolol and was thus utilized to quantify timolol in a linear range of 25-500 nM with a LOD of 8 nM. The TICOF recovered 99.4% of 0.5% timolol maleate in a commercial eye drop (RSD = 1.1%, n = 5). In addition, TICOF was used as a dispersive sorbent to recover 95% of 2.0 nM timolol from 20 mg of TICOF in 25 mL phosphate buffer. Dilution factors of 25 and 75 were the maximum tolerated proportions of the urine and serum matrix spiked with 2.0 nM timolol to reach recoveries of 92.4% and 90.3%, respectively.
Assuntos
Antagonistas Adrenérgicos beta/análise , Corantes Fluorescentes/química , Estruturas Metalorgânicas/química , Polímeros Molecularmente Impressos/química , Timolol/análise , Antagonistas Adrenérgicos beta/sangue , Antagonistas Adrenérgicos beta/química , Antagonistas Adrenérgicos beta/urina , Adsorção , Corantes Fluorescentes/síntese química , Humanos , Limite de Detecção , Estruturas Metalorgânicas/síntese química , Polímeros Molecularmente Impressos/síntese química , Soluções Oftálmicas/análise , Extração em Fase Sólida/métodos , Espectrometria de Fluorescência/métodos , Timolol/sangue , Timolol/química , Timolol/urinaRESUMO
K+ loading inhibits NKCC2 (Na-K-Cl cotransporter) and NCC (Na-Cl cotransporter) in the early distal tubules, resulting in Na+ delivery to the late distal convoluted tubules (DCTs). In the DCTs, Na+ entry through ENaC (epithelial Na channel) drives K+ secretion through ROMK (renal outer medullary potassium channel). WNK4 (with-no-lysine 4) regulates the NCC/NKCC2 through SAPK (Ste20-related proline-alanine-rich kinase)/OSR1 (oxidative stress responsive). K+ loading increases intracellular Cl-, which binds to the WNK4, thereby inhibiting autophosphorylation and downstream signals. Acute K+ loading-deactivated NCC was not observed in Cl--insensitive WNK4 mice, indicating that WNK4 was involved in K+ loading-inhibited NCC activity. However, chronic K+ loading deactivated NCC in Cl--insensitive WNK4 mice, indicating that other mechanisms may be involved. We previously reported that mammalian Ste20-like protein kinase 3 (MST3/STK24) was expressed mainly in the medullary TAL (thick ascending tubule) and at lower levels in the DCTs. MST3 -/- mice exhibited higher ENaC activity, causing hypernatremia and hypertension. To investigate MST3 function in maintaining Na+/K+ homeostasis in kidneys, mice were fed diets containing various concentrations of Na+ and K+. The 2% KCl diets induced less MST3 expression in MST3 -/- mice than that in wild-type (WT) mice. The MST3 -/- mice had higher WNK4, NKCC2-S130 phosphorylation, and ENaC expression, resulting in lower urinary Na+ and K+ excretion than those of WT mice. Lower urinary Na+ excretion was associated with elevated plasma [Na+] and hypertension. These results suggest that MST3 maintains Na+/K+ homeostasis in response to K+ loading by regulation of WNK4 expression and NKCC2 and ENaC activity.
Assuntos
Homeostase , Potássio na Dieta/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sódio/metabolismo , Animais , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/genética , Eliminação Renal , Membro 1 da Família 12 de Carreador de Soluto/genética , Membro 1 da Família 12 de Carreador de Soluto/metabolismoRESUMO
One new naturally occurring quinone, 3',4'-dihydroxy-1,2,6-trimethoxy-[1,1'-biphenyl]-4(1H)-one (1), one new diarylpropane, emarginone A (2), and one new neolignan, emarginone B (3), along with eighteen known compounds have been isolated from the chemical investigation of the EtOAc-soluble fraction of the Vaccinium emarginatum whole plant methanolic extract. The new structures were elucidated by combined analysis of spectroscopic analytical methods and comparison with the literature data obtained from known analogues. In addition, the cytotoxicity of compounds 2, 4, and 14-20 against Du145 and PC-3 prostate cancer cell lines using MTT cell proliferation assay was evaluated. Compounds 2 and 19 showed most potent cytotoxicity against Du145 with IC50 values of 7.53 and 6.63 µg/mL, respectively. Furthermore, compounds 2, 17, and 19 also exhibited significant cytotoxicity against PC-3 with IC50 values ranging from 3.44-6.64 µg/mL.
Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Vaccinium/química , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Estrutura Molecular , Células PC-3 , Fenilpropionatos/química , Fenilpropionatos/farmacologia , Extratos Vegetais/química , Neoplasias da Próstata/patologia , Quinonas/química , Quinonas/farmacologiaRESUMO
Dexmedetomidine (DEX), a highly selective agonist of α2-adrenergic receptors, has been tailored for sedation without risk of respiratory depression. Our hypothesis is that DEX produces any direct perturbations on ionic currents (e.g., hyperpolarization-activated cation current, Ih). In this study, addition of DEX to pituitary GH3 cells caused a time- and concentration-dependent reduction in the amplitude of Ih with an IC50 value of 1.21 µM and a KD value of 1.97 µM. A hyperpolarizing shift in the activation curve of Ih by 10 mV was observed in the presence of DEX. The voltage-dependent hysteresis of Ih elicited by long-lasting triangular ramp pulse was also dose-dependently reduced during its presence. In continued presence of DEX (1 µM), further addition of OXAL (10 µM) or replacement with high K+ could reverse DEX-mediated inhibition of Ih, while subsequent addition of yohimbine (10 µM) did not attenuate the inhibitory effect on Ih amplitude. The addition of 3 µM DEX mildly suppressed the amplitude of erg-mediated K+ current. Under current-clamp potential recordings, the exposure to DEX could diminish the firing frequency of spontaneous action potentials. In pheochromocytoma PC12 cells, DEX was effective at suppressing Ih together with a slowing in activation time course of the current. Taken together, findings from this study strongly suggest that during cell exposure to DEX used at clinically relevant concentrations, the DEX-mediated block of Ih appears to be direct and would particularly be one of the ionic mechanisms underlying reduced membrane excitability in the in vivo endocrine or neuroendocrine cells.
Assuntos
Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Dexmedetomidina/farmacologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Ativação do Canal Iônico/efeitos dos fármacos , Ivabradina/farmacologia , Oxaliplatina/farmacologia , Células PC12 , Canais de Potássio/metabolismo , Ratos , Ioimbina/farmacologiaRESUMO
BACKGROUND/AIM: Circadian rhythm is an internal clock that regulates the cycles of many biological functions. Epidemiological studies have linked aberrant circadian rhythm to an increased susceptibility to cancer and poor patient prognosis. However, there remains a gap in our understanding of genetic variants related to the circadian pathway in renal cell carcinoma (RCC) progression. PATIENTS AND METHODS: We examined the associations of 150 single nucleotide polymorphisms (SNPs) in 12 core circadian pathway genes with RCC risk and survival in 630 patients with RCC and controls. RESULTS: After adjusting for multiple comparisons and performing multivariate analyses, we found that the HLF rs6504958 polymorphism was significantly associated with RCC risk (q<0.05), whereas, no SNP association was significant for survival. Furthermore, the rs6504958 G allele was associated with reduced expression of HLF; consequently, a lower HLF expression was correlated with more advanced RCC. Moreover, a meta-analysis of six kidney cancer gene expression datasets demonstrated that an elevated HLF expression was associated with a favorable prognosis in patients with RCC (hazard ratio=0.70, 95% confidence interval=0.65-0.76, p<0.001). CONCLUSION: These findings implicate the potential protective role of HLF in the progression of RCC.