Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 251(Pt 1): 118638, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38462088

RESUMO

This study investigates the effects of climate change on the sediment loads of the Ping and Wang River basins and their contribution to the sediment dynamics of the lower Chao Phraya River basin in Thailand. The various climate models under different Representative Concentration Pathways (RCPs) scenarios are employed to project sediment loads in future. The findings indicate a significant increase in river flow approximately 20% in the Ping River (PR) and 35% in the Wang River (WR) by the mid-21st century and continuing into the distant future. Consequently, this is expected to result in sediment loads up to 0.33 × 106 t/y in the PR and 0.28 × 106 t/y in the WR. This escalation is particularly notable under the RCP 8.5 scenario, which assumes higher greenhouse gas emissions. Additionally, the research provides insights into the potential positive implications for the Chao Phraya Delta's coastal management. Without further damming in the Ping and Wang River basins, the anticipated rise in sediment supply could aid in mitigating the adverse effects of land subsidence and sea-level rise, which have historically caused extensive shoreline retreat in the delta region, particularly around Bangkok Metropolis. The paper concludes that proactive adaptation strategies are required to manage the expected changes in the hydrological and sediment regimes to protect vulnerable coastal zones and ensure the sustainable management of the Chao Phraya River Basin in the face of climate change.

2.
Sci Total Environ ; 764: 142865, 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33097262

RESUMO

This review provides focused insights into the contamination status, sources, and ecological risks associated with multiple classes of antibiotics in surface water from the East and Southeast Asia based on publications over the period 2007 to 2020. Antibiotics are ubiquitous in surface water of these countries with concentrations ranging from <1 ng/L to hundreds µg/L and median values from 10 to 100 ng/L. Wider ranges and higher maximum concentrations of certain antibiotics were found in surface water of the East Asian countries like China and South Korea than in the Southeast Asian nations. Environmental behavior and fate of antibiotics in surface water is discussed. The reviewed occurrence of antibiotics in their sources suggests that effluent from wastewater treatment plants, wastewater from aquaculture and livestock production activities, and untreated urban sewage are principal sources of antibiotics in surface water. Ecological risks associated with antibiotic residues were estimated for aquatic organisms and the prevalence of antibiotic resistance genes and antibiotic-resistant bacteria were reviewed. Such findings underline the need for synergistic efforts from scientists, engineers, policy makers, government managers, entrepreneurs, and communities to manage and reduce the burden of antibiotics and antibiotic resistance in water bodies of East and Southeast Asian countries.


Assuntos
Antibacterianos , Poluentes Químicos da Água , Antibacterianos/análise , Sudeste Asiático , China , Monitoramento Ambiental , Ásia Oriental , República da Coreia , Águas Residuárias , Água , Poluentes Químicos da Água/análise
3.
Water Res ; 147: 13-24, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30296605

RESUMO

Freshwaters are important sources of greenhouse gases (GHGs) to the atmosphere that may partially offset the terrestrial carbon sink. However, current emission estimates from inland waters remain uncertain due to data paucity in key regions with a large freshwater surface area, such as China. Here, we show that the areal fluxes of GHGs (carbon dioxide, methane, and nitrous oxide) from lakes and reservoirs in China are much larger than previous estimates. Our work summarized data from 310 lakes and 153 reservoirs, and revealed diffusive emissions of 1.56 (95% confidence interval: 1.12-2.00) Tg C-CH4/y and 25.2 (20.8-29.5) Tg C-CO2/y from reservoirs and lakes. Chinese lakes and reservoirs emit 175.0 (134.7-215.3) Tg CO2 equivalent, with 73.4% of this forcing contributed by lakes. These aquatic sources are equivalent to 14.1%-22.6% of China's estimated terrestrial carbon sink. Our results suggest a disproportionally high contribution of China's reservoirs and lakes to national and global GHGs emissions, highlighting major data gaps and the need of including more artificial and natural lakes data from developing countries like China in global GHGs budgets.


Assuntos
Gases de Efeito Estufa , Dióxido de Carbono , China , Efeito Estufa , Lagos , Metano
4.
Environ Manage ; 51(3): 503-10, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23314565

RESUMO

China, with the confrontation of water-related problems as an element of its long history, has been investing heavily in water engineering projects over the past few decades based on the assumption that these projects can solve its water problems. However, the anticipated benefits did not really occur, or at least not as large as expected. Instead, the results involved additional frustrations, such as biodiversity losses and human-induced disasters (i.e., landslides and earthquakes). Given its inherent shortcomings, the present engineering-dominated strategy for the management of water resources cannot help solve China's water problems and achieve its goal of low-carbon transformation. Therefore, the present strategy for water resources exploitation needs to be reevaluated and redressed. A policy change to achieve better management of Chinese rivers is urgently needed.


Assuntos
Conservação dos Recursos Naturais , Rios , Recursos Hídricos , China , Fontes Geradoras de Energia , Engenharia , Governo Federal , Política Pública
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA