Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Life (Basel) ; 14(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38672718

RESUMO

Microalgae can convert carbon dioxide into organic matter through photosynthesis. Thus, they are considered as an environment-friendly and efficient cell chassis for biologically active metabolites. Microalgal lipids are a class of organic compounds that can be used as raw materials for food, feed, cosmetics, healthcare products, bioenergy, etc., with tremendous potential for commercialization. In this review, we summarized the commercial lipid products from eukaryotic microalgae, and updated the mechanisms of lipid synthesis in microalgae. Moreover, we reviewed the enhancement of lipids, triglycerides, polyunsaturated fatty acids, pigments, and terpenes in microalgae via environmental induction and/or metabolic engineering in the past five years. Collectively, we provided a comprehensive overview of the products, biosynthesis, induced strategies and genetic engineering in microalgal lipids. Meanwhile, the outlook has been presented for the development of microalgal lipids industries, emphasizing the significance of the accurate analysis of lipid bioactivity, as well as the high-throughput screening of microalgae with specific lipids.

2.
Materials (Basel) ; 17(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38673282

RESUMO

Disturbance stress assessment is crucial for ensuring the safety of deep engineering projects. Currently, the primary technique for continuously monitoring three-dimensional disturbance stress is the stress relief method, but its accuracy can be compromised by rock damage that occurs after excavation. To mitigate this issue, grouting is employed to repair damaged rock masses and enhance their mechanical properties. However, the impact of grouting techniques on improving the accuracy of disturbance stress testing is challenging to evaluate through laboratory and in situ experiments. To address this problem, numerical simulation technology is employed to investigate disturbance stress testing after the repair of damaged surrounding rock through grouting. The simulation results indicate that grouting repair significantly enhances the accuracy of stress testing. As the depth of damaged rock mass repair increases, the error in stress testing decreases. Achieving complete repair of the initial damage zone during grouting is essential to eliminate errors in stress testing. Expanding on the positive effects of grouting repair on stress testing, a segmented testing method for disturbance stress is proposed. The method involves separately testing the initial stress and stress changes, thereby reducing the stress level within the rock, minimizing rock failure, and enhancing the accuracy of disturbance stress testing. This study provides valuable reference methods, and the outcomes of this research will serve as a foundation for enhancing the accuracy of disturbance stress testing in deep hard rock engineering.

3.
J Steroid Biochem Mol Biol ; 240: 106498, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38447903

RESUMO

Phytosterols are vital structural and regulatory components in plants. Zea mays produces a series of phytosterols that are specific to corn. However, the underline biosynthetic mechanism remains elusive. In this study, we identified a novel sterol methyltransferase from Z. mays (ZmSMT1-2) which showed a unique feature compared with documented plant SMTs. ZmSMT1-2 showed a substrate preference for cycloartenol. Using S-adenosyl-L-methionine (AdoMet) as a donor, ZmSMT1-2 converted cycloartenol into alkylated sterols with unique side-chain architectures, including Δ25(27) (i.e., cyclolaudenol and cycloneolitsol) and Δ24(25) (i.e., cyclobranol) sterols. Cycloneolitsol is identified as a product of SMTs for the first time. Our discovery provides a previously untapped mechanism for phytosterol biosynthesis and adds another layer of diversity of sterol biosynthesis.


Assuntos
Metiltransferases , Fitosteróis , Triterpenos , Zea mays , Zea mays/metabolismo , Fitosteróis/metabolismo , Fitosteróis/química , Metiltransferases/metabolismo , Metiltransferases/química , Metiltransferases/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , Especificidade por Substrato , S-Adenosilmetionina/metabolismo , S-Adenosilmetionina/química
5.
Mol Biotechnol ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37843756

RESUMO

Plant-parasitic nematodes ingest and convert host phytosterols via dealkylation to cholesterol for both structural and hormonal requirements. The insect 24-dehydrocholesterol reductase (DHCR24) was shown in vitro as a committed enzyme in the dealkylation via chemical blocking. However, an increased brood size and ovulation rate, instead compromised development, were observed in the engineered nematode Caenorhabditis elegans where the DHCR24 gene was knocked down, indicating the relationship between DHCR24 and dealkylation and their function in nematodes remains illusive. In this study, a defect in C. elegans DHCR24 causes impaired growth of the nematode with sitosterol (a major component of phytosterols) as a sole sterol source. Plant sterols with rationally designed structure (null substrates for dealkylation) can't be converted to cholesterol in wild-type worms, and their development was completely halted. This study underpins the essential function of DHCR24 in nematodes and would be beneficial for the development of novel nematocidal strategies.

6.
Biotechnol Biofuels Bioprod ; 16(1): 133, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679828

RESUMO

The use of marine microalgae in industrial systems is attractive for converting CO2 into value-added products using saline water and sunlight. The plant nature and demonstrated industrial potential facilitate Chlorella spp. as excellent model organisms for both basic research and commercial application. However, the transformation method has not been developed in marine Chlorella spp., thus genetic engineering is hindered in exploiting the industrial potentialities of these strains. In this study, we provided a transformation protocol for the marine Chlorella strain MEM25, which showed robust characteristics, including high production of proteins and polyunsaturated fatty acids in multiple cultivation systems over various spatial-temporal scales. We showed that transformants could be obtained in a dramatically time-saving manner (comparable to Saccharomyces cerevisiae) with four functional proteins expressed properly. The transgenes are integrated into the genome and can be successfully inherited for more than two years. The development of a marine Chlorella transformation method, in combination with the complete genome, will greatly facilitate more comprehensive mechanism studies and provide possibilities to use this species as chassis for synthetic biology to produce value-added compounds with mutual advantage in neutralization of CO2 in commercial scales.

7.
Biotechnol Biofuels Bioprod ; 16(1): 143, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37759320

RESUMO

To improve the CO2 tolerance of a marine microalga Chlorella sp. of which the production capacity has been demonstrated industrially, a mutant library was created and a strain hct53 was screened. Compared to the parental strain, hct53 shows a high CO2 capture capacity, while starch biosynthesis is compromised, with increases in health beneficial metabolites and antioxidant capacity. Global gene expression and genome-wide mutation distribution revealed that transcript choreography was concomitant with more active CO2 sequestration, an increase in the lipid synthesis, and a decrease in the starch and protein synthesis. These results suggest that artificial trait improvement via mutagenesis, couple with multiomics analysis, helps discover genetic switches that induce the bespoke conversion of carbon flow from "redundant metabolites" to valuable ones for functional food.

8.
Trends Microbiol ; 31(1): 9-21, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35985939

RESUMO

Microalga-microbiome interactions are central to both health and disease of aquatic environments. Despite impressive advances in deciphering how microorganisms participate in and impact aquatic ecosystems, the evolution and ecological involvement of microalgae and the microbiome in polluted waters are typically studied independently. Here, the phycosphere (i.e., the consortia of microalgae and the related microbiome) is regarded as an independent and integrated life form, and we summarize the survival strategies exhibited by this symbiont when exposed to anthropogenic pollution. We highlight the cellular strategies and discuss the modulation at the transcriptional and population levels, which reciprocally alters community structure or genome composition for medium-term acclimation or long-term adaptation. We propose a 'PollutantBiome' concept to help the understanding of microalga-microbiome interactions and development of beneficial microbial synthetic communities for pollutant remediation.


Assuntos
Microalgas , Microbiota , Microalgas/genética , Microbiota/genética
9.
Front Plant Sci ; 13: 927200, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172550

RESUMO

Dinoflagellate inhabitants of the reef-building corals exchange nutrients and signals with host cells, which often benefit the growth of both partners. Phytohormones serve as central hubs for signal integration between symbiotic microbes and their hosts, allowing appropriate modulation of plant growth and defense in response to various stresses. However, the presence and function of phytohormones in photosynthetic dinoflagellates and their function in the holobionts remain elusive. We hypothesized that endosymbiotic dinoflagellates may produce and employ phytohormones for stress responses. Using the endosymbiont of reef corals Breviolum minutum as model, this study aims to exam whether the alga employ analogous signaling systems by an integrated multiomics approach. We show that key gibberellin (GA) biosynthetic genes are widely present in the genomes of the selected dinoflagellate algae. The non-13-hydroxylation pathway is the predominant route for GA biosynthesis and the multifunctional GA dioxygenase in B. minutum has distinct substrate preference from high plants. GA biosynthesis is modulated by the investigated bleaching-stimulating stresses at both transcriptional and metabolic levels and the exogenously applied GAs improve the thermal tolerance of the dinoflagellate. Our results demonstrate the innate ability of a selected Symbiodiniaceae to produce the important phytohormone and the active involvement of GAs in the coordination and the integration of the stress response.

10.
J Am Chem Soc ; 144(20): 9023-9032, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35561259

RESUMO

The 4-methyl steranes serve as molecular fossils and are used for studying both eukaryotic evolution and geological history. The occurrence of 4α-methyl steranes in sediments has long been considered evidence of products of partial demethylation mediated by sterol methyl oxidases (SMOs), while 4ß-methyl steranes are attributed entirely to diagenetic generation from 4α-methyl steroids since possible biological sources of their precursor 4ß-methyl sterols are unknown. Here, we report a previously unknown C4-methyl sterol biosynthetic pathway involving a sterol methyltransferase rather than the SMOs. We show that both C4α- and C4ß-methyl sterols are end products of the sterol biosynthetic pathway in an endosymbiont of reef corals, Breviolum minutum, while this mechanism exists not only in dinoflagellates but also in eukaryotes from alveolates, haptophytes, and aschelminthes. Our discovery provides a previously untapped route for the generation of C4-methyl steranes and overturns the paradigm that all 4ß-methyl steranes are diagenetically generated from the 4α isomers. This may facilitate the interpretation of molecular fossils and understanding of the evolution of eukaryotic life in general.


Assuntos
Metiltransferases , Esteróis , Eucariotos/metabolismo , Células Eucarióticas/metabolismo , Metiltransferases/metabolismo , Oxirredutases
11.
Bioprocess Biosyst Eng ; 45(3): 589-597, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34994848

RESUMO

This research of mixotrophic microalgae Isochrysis 3011 with glycerol was combined with the treatment of aqua-cultural wastewater, different initial concentrations, and optimized light intensities. The algae growth rate, removal efficiencies of total nitrogen (TN) and total phosphorus (TP) were determined. Results showed that the suitable initial concentration was 0.4 g L-1, and the optimum light intensity was 60 µmol m-2 s-1. The growth of the mixotrophic group was better than that of the autotrophic culture. The biomass yield of the mixotrophic group with glycerol was 0.17 g L-1 d-1, and the removal rates of TN and TP were 73.39% and 95.61%, respectively. The content of total lipid and total protein in mixotrophic group were higher than the values of the autotrophic group. This indicates that aquaculture wastewater treatment with mixotrophic bait microalgae can obtain superior micro-algal biomass, which is also a potential technology for wastewater utilization and ecological protection.


Assuntos
Haptófitas , Microalgas , Purificação da Água , Aquicultura , Biomassa , Nitrogênio/metabolismo , Águas Residuárias
12.
Crit Rev Biotechnol ; 41(8): 1233-1256, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34130561

RESUMO

Domesticated microalgae hold great promise for the sustainable provision of various bioresources for human domestic and industrial consumption. Efforts to exploit their potential are far from being fully realized due to limitations in the know-how of microalgal engineering. The associated technologies are not as well developed as those for heterotrophic microbes, cyanobacteria, and plants. However, recent studies on microalgal metabolic engineering, genome editing, and synthetic biology have immensely helped to enhance transformation efficiencies and are bringing new insights into this field. Therefore, this article, summarizes recent developments in microalgal biotechnology and examines the prospects for generating specialty and commodity products through the processes of metabolic engineering and synthetic biology. After a brief examination of empirical engineering methods and vector design, this article focuses on quantitative transformation cassette design, elaborates on target editing methods and emerging digital design of algal cellular metabolism to arrive at high yields of valuable products. These advances have enabled a transition of manners in microalgal engineering from single-gene and enzyme-based metabolic engineering to systems-level precision engineering, from cells created with genetically modified (GM) tags to that without GM tags, and ultimately from proof of concept to tangible industrial applications. Finally, future trends are proposed in microalgal engineering, aiming to establish individualized transformation systems in newly identified species for strain-specific specialty and commodity products, while developing sophisticated universal toolkits in model algal species.


Assuntos
Cianobactérias , Microalgas , Biotecnologia , Cianobactérias/genética , Edição de Genes , Humanos , Engenharia Metabólica , Microalgas/genética , Biologia Sintética
13.
Metab Eng ; 66: 157-166, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33823272

RESUMO

The chain length (CL) of fatty acids (FAs) is pivotal to oil property, yet to what extent it can be customized in industrial oleaginous microalgae is unknown. In Nannochloropsis oceanica, to modulate long-chain FAs (LCFAs), we first discovered a fungi/bacteria-originated polyketide synthase (PKS) system which involves a cytoplasmic acyl-ACP thioesterase (NoTE1). NoTE1 hydrolyzes C16:0-, C16:1- and C18:1-ACP in vitro and thus intercepts the specific acyl-ACPs elongated by PKS for polyunsaturated FA biosynthesis, resulting in elevation of C16/C18 monounsaturated FAs when overproduced and increase of C20 when knocked out. For medium-chain FAs (MCFAs; C8-C14), C8:0 and C10:0 FAs are boosted by introducing a Cuphea palustris acyl-ACP TE (CpTE), whereas C12:0 elevated by rationally engineering CpTE enzyme's substrate-binding pocket to shift its CL preference towards C12:0. A mechanistic model exploiting both native and engineered PKS and type II FAS pathways was thus proposed for manipulation of carbon distribution among FAs of various CL. The ability to tailor FA profile at the unit CL resolution from C8 to C20 in Nannochloropsis spp. lays the foundation for scalable production of designer lipids via industrial oleaginous microalgae.


Assuntos
Microalgas , Estramenópilas , Ácidos Graxos , Lipídeos , Microalgas/genética , Policetídeo Sintases , Estramenópilas/genética
14.
Sci Total Environ ; 780: 146369, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33773342

RESUMO

Region-specific Research and Development (R&D) of microalga-derived product systems are crucial if "biotech's green gold" is to be explored in a rational and economically viable way. Coastal zones, particularly the locations around the equator, are typically considered to be optimum cultivation sites due to stable annual temperature, light, and ready availability of seawater. However, a 'cradle-to-grave' assessment of the development of microalgal biotechnology in these areas, not only under the laboratory conditions, but also in the fields has not yet been demonstrated. In this study, to evaluate the viability of microalga-derived multi-product technology, we showed the development of microalgal biotechnology in coastal zones for aquaculture and food. By creating and screening a (sub)tropical microalgal collection, a Chlorella strain MEM25 with a robust growth in a wide range of salinities, temperatures, and light intensities was identified. Evaluation of the economic viability and performance of different scale cultivation system designs (500 L and 5000 L closed photobioreactors and 60,000 L open race ponds, ORPs) at coastal zones under geographically specific conditions showed the stable and robust characteristics of MEM25 across different production system designs and various spatial and temporal scales. It produces high amounts of proteins and polyunsaturated fatty acids (PUFAs) in various conditions. Feeding experiments reveal the nutritional merits of MEM25 as food additives where PUFAs and essential amino acids are enriched and the algal diet improves consumers' growth. Economic evaluation highlights an appreciable profitability of MEM25 production as human or animal food using ORP systems. Therefore, despite the pros and cons, sound opportunities exist for the development of market-ready multiple-product systems by employing region-specific R&D strategies for microalgal biotechnology.


Assuntos
Chlorella , Microalgas , Animais , Aquicultura , Biomassa , Biotecnologia , Humanos , Desenvolvimento Sustentável
15.
Nat Commun ; 12(1): 679, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514722

RESUMO

Diverse algae of the red lineage possess chlorophyll a-binding proteins termed LHCR, comprising the PSI light-harvesting system, which represent an ancient antenna form that evolved in red algae and was acquired through secondary endosymbiosis. However, the function and regulation of LHCR complexes remain obscure. Here we describe isolation of a Nannochloropsis oceanica LHCR mutant, named hlr1, which exhibits a greater tolerance to high-light (HL) stress compared to the wild type. We show that increased tolerance to HL of the mutant can be attributed to alterations in PSI, making it less prone to ROS production, thereby limiting oxidative damage and favoring growth in HL. HLR1 deficiency attenuates PSI light-harvesting capacity and growth of the mutant under light-limiting conditions. We conclude that HLR1, a member of a conserved and broadly distributed clade of LHCR proteins, plays a pivotal role in a dynamic balancing act between photoprotection and efficient light harvesting for photosynthesis.


Assuntos
Adaptação Fisiológica/genética , Proteínas de Ligação à Clorofila/metabolismo , Luz/efeitos adversos , Complexo de Proteína do Fotossistema I/metabolismo , Estramenópilas/fisiologia , Adaptação Fisiológica/efeitos da radiação , Clorofila A/metabolismo , Proteínas de Ligação à Clorofila/genética , Proteínas de Ligação à Clorofila/isolamento & purificação , Mutação , Fotossíntese/genética , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema I/genética , Estramenópilas/efeitos da radiação
16.
mSystems ; 5(5)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-32994291

RESUMO

Cnidarians cannot synthesize sterols (which play essential roles in growth and development) de novo but often use sterols acquired from endosymbiotic dinoflagellates. While sterol availability can impact the mutualistic interaction between coral host and algal symbiont, the biosynthetic pathways (in the dinoflagellate endosymbionts) and functional roles of sterols in these symbioses are poorly understood. In this study, we found that itraconazole, which perturbs sterol metabolism by inhibiting the sterol 14-demethylase CYP51 in dinoflagellates, induces bleaching of the anemone Heteractis crispa and that bleaching perturbs sterol metabolism of the dinoflagellate. While Symbiodiniaceae have clade-specific sterol metabolites, they share features of the common sterol biosynthetic pathway but with distinct architecture and substrate specificity features of participating enzymes. Tracking sterol profiles and transcripts of enzymes involved in sterol biosynthesis across time in response to different environmental cues revealed similarities and idiosyncratic features of sterol synthesis in the endosymbiont Breviolum minutum Exposure of algal cultures to high levels of light, heat, and acidification led to alterations in sterol synthesis, including blocks through downregulation of squalene synthase transcript levels accompanied by marked growth reductions.IMPORTANCE These results indicate that sterol metabolites in Symbiodiniaceae are clade specific, that their biosynthetic pathways share architectural and substrate specificity features with those of animals and plants, and that environmental stress-specific perturbation of sterol biosynthesis in dinoflagellates can impair a key mutualistic partnership for healthy reefs.

17.
Metab Eng Commun ; 11: e00142, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32995270

RESUMO

Nannochloropsis spp. are promising industrial microalgae for scalable oil production and the lipid production can be boosted by nutrient starvation and high irradiance. However, these stimuli halt growth, thereby decreasing overall productivity. In this study, we created transgenic N. oceanica where AtDXS gene encoding 1-deoxy-D-xylulose 5-phosphate synthase (DXS) derived from Arabidopsis thaliana was overexpressed in vivo. Compared with the wild type (WT), engineered Nannochloropsis showed a higher CO2 absorption capacity and produced more biomass, lipids, and carbohydrates with more robust growth in either preferred conditions or various stressed conditions (low light, high light, nitrogen starvation, and trace element depletion). Specifically, relative to the WT, lipid production increased by ~68.6% in nitrogen depletion (~1.08 â€‹g â€‹L-1) and ~110.6% in high light (~1.15 â€‹g â€‹L-1) in the transgenic strains. As for neutral lipid (triacylglycerol, TAG), the engineered strains produced ~93.2% more in nitrogen depletion (~0.77 â€‹g â€‹L-1) and ~148.6% more in high light (~0.80 â€‹g â€‹L-1) than the WT. These values exceed available records in engineered industrial microalgae. Therefore, engineering control-knob genes could modify multiple biological processes simultaneously and enable efficient carbon partitioning to lipid biosynthesis with elevated biomass productivity. It could be further exploited for simultaneous enhancement of growth property and oil productivity in more industrial microalgae.

18.
Biotechnol Biofuels ; 12: 168, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31297156

RESUMO

BACKGROUND: In industrial oleaginous microalgae such as Nannochloropsis spp., the key components of the carbon concentration mechanism (CCM) machineries are poorly defined, and how they are mobilized to facilitate cellular utilization of inorganic carbon remains elusive. RESULTS: For Nannochloropsis oceanica, to unravel genes specifically induced by CO2 depletion which are thus potentially underpinning its CCMs, transcriptome, proteome and metabolome profiles were tracked over 0 h, 3 h, 6 h, 12 h and 24 h during cellular response from high CO2 level (HC; 50,000 ppm) to very low CO2 (VLC; 100 ppm). The activity of a biophysical CCM is evidenced based on induction of transcripts encoding a bicarbonate transporter and two carbonic anhydrases under VLC. Moreover, the presence of a potential biochemical CCM is supported by the upregulation of a number of key C4-like pathway enzymes in both protein abundance and enzymatic activity under VLC, consistent with a mitochondria-implicated C4-based CCM. Furthermore, a basal CCM underpinned by VLC-induced upregulation of photorespiration and downregulation of ornithine-citrulline shuttle and the ornithine urea cycles is likely present, which may be responsible for efficient recycling of mitochondrial CO2 for chloroplastic carbon fixation. CONCLUSIONS: Nannochloropsis oceanica appears to mobilize a comprehensive set of CCMs in response to very low CO2. Its genes induced by the stress are quite distinct from those of Chlamydomonas reinhardtii and Phaeodactylum tricornutum, suggesting tightly regulated yet rather unique CCMs. These findings can serve the first step toward rational engineering of the CCMs for enhanced carbon fixation and biomass productivity in industrial microalgae.

19.
Aquat Toxicol ; 213: 105215, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31200330

RESUMO

Coral reefs are in significant decline globally due to climate change and environmental pollution. The ocean is becoming more acidic due to rising atmospheric pCO2, and ocean acidification is considered a major threat to coral reefs. However, little is known about the exact mechanism by which acidification impacts coral symbiosis. As an important component of the symbiotic association, to explore the responses of symbionts could greatly enhance our understanding of this issue. The present work aimed to identify metabolomic changes of Breviolum minutum in acidification (low pH) condition, and investigate the underlying mechanisms responsible. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was applied to determine metabolite profiles after exposure to ambient and acidic conditions. We analysed the resulting metabolite data, and acidification appeared to have little effect on photosynthetic parameters, but it inhibited growth. Marked alterations in metabolite pools were observed in response to acidification that may be important in acclimation to climate change. Acidification may affect the biosynthesis of amino acids and proteins, and thereby inhibit the growth of B. minutum. Metabolites identified using this approach provide targets for future analyses aimed at understanding the responses of Symbiodiniaceae to environmental disturbance.


Assuntos
Ácidos/metabolismo , Antozoários/metabolismo , Metabolômica/métodos , Animais , Análise por Conglomerados , Recifes de Corais , Metaboloma , Fotossíntese , Poluentes Químicos da Água/toxicidade
20.
Bioresour Technol ; 268: 340-345, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30096641

RESUMO

To improve the economic viability of Chlorella as feedstock for food commodities, a serial of concentrations of low-cost sweet sorghum juice (SSJ), alternative to glucose, were used for the fermentation of Chlorella pyrenoidosa. A high biomass and protein production (8.91 g L-1 biomass and 4.52 g L-1 protein) was revealed with 20% SSJ. To further increase productivity, heavy-ion irradiation-mediated mutagenesis was employed to create mutants where a strain K05, with desired phenotypes (increased biomass and protein production in pilot-scale fermentation), was screened. Compared with the parental strain, the production of biomass, proteins, and chlorophylls of mutant K05 increased by 11.6%, 31.8%, and 7.6%, respectively. Production capacities under industrial scale (two-ton) further pinpoint the stability and scalability of mutant K05. These results suggest that advances in cultivation techniques coupled with artificial strain improvement will further promote microalgae as an attractive platform of functional food.


Assuntos
Chlorella , Fermentação , Alimentos , Biomassa , Microalgas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA