Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Thromb Res ; 240: 109044, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38824799

RESUMO

Protein C (PC), a vitamin K-dependent serine protease zymogen in plasma, can be activated by thrombin-thrombomodulin(TM) complex, resulting in the formation of activated protein C (APC). APC functions to downregulate thrombin generation by inactivating active coagulation factors V(FVa) and VIII(FVIIIa). Deficiency in PC increases the risk of venous thromboembolism (VTE). We have identified two unrelated VTE patients with the same heterozygous mutation (c.1384 T > C, p.Ter462GlnextTer17) in PROC. To comprehend the role of this mutation in VTE development, we expressed recombinant PC-Ter462GlnextTer17 in mammalian cells and evaluated its characteristics using established coagulation assay systems. Functional studies revealed a significant impairment in the activation of the mutant by thrombin or thrombin-TM complex. Furthermore, APC-Ter462GlnextTer17 demonstrated diminished hydrolytic activity towards the chromogenic substrate S2366. APTT and FVa degradation assays showed that both the anticoagulant activity of the mutant protein was markedly impaired, regardless of whether protein S was present or absent. These results were further supported by a thrombin generation assay conducted using purified and plasma-based systems. In conclusion, the Ter462GlnextTer17 mutation introduces a novel tail at the C-terminus of PC, leading to impaired activity in both PC zymogen activation and APC's anticoagulant function. This impairment contributes to thrombosis in individuals carrying this heterozygous mutation and represents a genetic risk factor for VTE.

2.
Glob Med Genet ; 11(2): 187-195, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38860162

RESUMO

Objective Myelodysplastic syndrome (MDS) is a malignant clonal disorder of hematopoietic stem cells which is characterized by morphologic dysplasia. However, the pathological characteristics of megakaryocytes (MKs) in MDS patients with gene mutation are not well established. Methods Bone marrow MK specimens from 104 patients with primary MDS were evaluated, and all patients were distributed into two groups according to gene mutation associated with functional MKs. The morphologic and cellular characteristics of MKs and platelets were recorded and compared. Results The more frequently mutated genes in MDS patients were TUBB1 (11.54%), VWF (8.65%), NBEAL2 (5.77%), and the most common point mutation was TUBB1 p.(R307H) and p.(Q43P). Patients with MK mutation showed a decrease in adenosine diphosphate-induced platelet aggregation, high proportion of CD34 + CD61 + MKs (10.00 vs. 4.00%, p = 0.012), and short overall survival (33.15 vs. 40.50 months, p = 0.013). Further, patients with a higher percent of CD34 + CD61 + MKs (≧20.00%) had lower platelet counts (36.00 × 10 9 /L vs. 88.50 × 10 9 /L, p = 0.015) and more profound emperipolesis ( p = 0.001). By analyzing RNA-sequencing of MKs, differentially expressed mRNA was involved in physiological processes including platelet function and platelet activation, especially for MDS patients with high percent of CD34 + CD61 + MKs. The high levels of expression of CD62P, CXCL10, and S100A9 mRNA, shown by RNA sequencing, were validated by PCR assay. Conclusion High proportion of CD34 + CD61 + MKs was a poor prognostic factor in MDS patients with MK mutation. CD62P, CXCL10, and S100A9 may be the potential targets to evaluate the molecular link between gene defects and platelet function.

3.
J Thromb Haemost ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38788977

RESUMO

BACKGROUND: Protein C (PC) pathway serves as a major defense mechanism against thrombosis by the activation of PC through the thrombin-thrombomodulin complex and subsequent inactivation of the activated factor (F)V (FVa) and FVIII (FVIIIa) with the assistance of protein S, thereby contributing to hemostatic balance. We identified 2 unrelated patients who suffered from recurrent thrombosis and carried the same heterozygous mutation c.1153A>G, p.Met343Val (M343V), in PROC gene. This mutation had not been previously reported. OBJECTIVES: To explore the molecular basis underlying the anticoagulant defect in patients carrying the M343V mutation in PROC. METHODS: We expressed PC-M343V variant in mammalian cells and characterized its properties through coagulation assays. RESULTS: Our findings demonstrated that while activation of mutant zymogen by thrombin-thrombomodulin complex was slightly affected, cleavage of chromogenic substrate by APC-M343V was significantly impaired. However, Ca2+ increased the cleavage efficiency by approximately 50%. Additionally, there was a severe reduction in affinity between APC-M343V and Na+. Furthermore, the inhibitory ability of APC-M343V toward FVa was markedly impaired. Structural and simulation analyses suggested that Val343 might disrupt the potential hydrogen bonds with Trp380 and cause Trp380 to orient closer to His211, potentially interfering with substrate binding and destabilizing the catalytic triad of APC. CONCLUSION: The M343V mutation in patients adversely affects the reactivity and/or folding of the active site as well as the binding of the physiological substrate to the protease, resulting in impaired protein C anticoagulant activity and ultimately leading to thrombosis.

4.
Thromb Haemost ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38011863

RESUMO

BACKGROUND: Protein C (PC) is a vitamin K-dependent anticoagulant serine protease zymogen which upon activation by the thrombin-thrombomodulin (TM) complex downregulates the coagulation cascade by degrading cofactors Va and VIIIa by limited proteolysis. We identified a thrombosis patient who carried a heterozygous mutation c.881G > A, p.Ser252Asn (S252N) in PROC. This mutation was originally described in a report of novel mutations in patients presenting with defective PC anticoagulant activity in Paris. The research identified PC-S252N (the "Paris" mutation) in a propositus and her family members and highlighted the critical role of Ser252 in the anticoagulation process of activated PC (APC). MATERIAL AND METHODS: We expressed the PC-S252N mutant in mammalian cells and characterized the properties in coagulation assays to decipher the molecular basis of anticoagulant defect of this mutation. RESULTS: We demonstrated that PC-S252N had a diminished ability to TM binding, which resulted in its impaired activation by the thrombin-TM complex. However, APC-S252N exhibited a slightly stronger cleavage capacity for the chromogenic substrate. Meanwhile, the catalytic activity of APC-S252N toward FVa was significantly reduced. Sequence analysis revealed that Ser252 to Asn substitution introduced a new potential N-linked glycosylation site (252NTT254) in the catalytic domain of PC, which adversely affected both the activation process of PC and anticoagulant activity of APC. CONCLUSION: The new N-glycosylation site (252NTT254) resulting from the mutation of Ser252 to Asn252 in PROC affects the overall structure of the protease, thereby adversely affecting the anticoagulant function of protein C. This modification has a negative impact on both TM-promoted activation of protein C and APC cleavage of FVa, ultimately leading to thrombosis in the patient.

5.
Thromb Haemost ; 122(5): 679-691, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34256393

RESUMO

A patient with hematuria in our clinic was diagnosed with urolithiasis. Analysis of the patient's plasma clotting time indicated that both activated partial thromboplastin time (52.6 seconds) and prothrombin time (19.4 seconds) are prolonged and prothrombin activity is reduced to 12.4% of normal, though the patient exhibited no abnormal bleeding phenotype and a prothrombin antigen level of 87.9%. Genetic analysis revealed the patient is homozygous for prothrombin Y510N mutation. We expressed and characterized the prothrombin-Y510N variant in appropriate coagulation assays and found that the specificity constant for activation of the mutant zymogen by factor Xa is impaired approximately fivefold. Thrombin generation assay using patient's plasma and prothrombin-deficient plasma supplemented with either wild-type or prothrombin-Y510N revealed that both peak height and time to peak for the prothrombin mutant are decreased; however, the endogenous thrombin generation potential is increased. Further analysis indicated that the thrombin mutant exhibits resistance to antithrombin and is inhibited by the serpin with approximately 12-fold slower rate constant. Protein C activation by thrombin-Y510N was also decreased by approximately 10-fold; however, thrombomodulin overcame the catalytic defect. The Na+-concentration-dependence of the amidolytic activities revealed that the dissociation constant for the interaction of Na+ with the mutant has been elevated approximately 20-fold. These results suggest that Y510 (Y184a in chymotrypsin numbering) belongs to network of residues involved in binding Na+. A normal protein C activation by thrombin-Y510N suggests that thrombomodulin modulates the conformation of the Na+-binding loop of thrombin. The clotting defect of thrombin-Y510N appears to be compensated by its markedly lower reactivity with antithrombin, explaining patient's normal hemostatic phenotype.


Assuntos
Protrombina , Trombomodulina , Antitrombina III , Antitrombinas , Transtornos Herdados da Coagulação Sanguínea , Humanos , Proteína C/metabolismo , Protrombina/metabolismo , Trombina/metabolismo , Trombomodulina/metabolismo
6.
Hum Mutat ; 43(2): 215-227, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34882887

RESUMO

Approximately 10% of von Willebrand factor (VWF) gene variants are suspected to disrupt messenger RNA (mRNA) processing, the number of which might be underestimated due to the lack of transcript assays. In the present study, we provided a detailed strategy to evaluate the effects of nine putative splice site variants (PSSVs) of VWF on mRNA processing as well as protein properties and establish their genotype-phenotype relationships. Eight of nine PSSVs affected VWF splicing: c.322A>T, c.1534-13_1551delinsCA, and c.8116-2del caused exon skipping; c.221-2A>C, c.323+1G>T, and c.2547-13T>A resulted in the activation of cryptic splice sites; c.2684A>G led to exon skipping and activation of a cryptic splice site; c.2968-14A>G created a new splice site. The remaining c.5171-9del was likely benign. The efficiency of nonsense-mediated mRNA decay (NMD) was much higher in platelets compared to leukocytes, impairing the identification of aberrant transcripts in 4 of 8 PSSVs. The nonsense variant c.322A>T partially impaired mRNA processing, leaking a small amount of correct transcripts with c.322T (p.Arg108*), while the missense variant c.2684A>G totally disrupted normal splicing of VWF, rather than produced mutant protein with the substitution of Gln895Arg. The results of this study would certainly add novel insights into the molecular events behind von Willebrand disease.


Assuntos
Sítios de Splice de RNA , Doenças de von Willebrand , Fator de von Willebrand , Humanos , Splicing de RNA , RNA Mensageiro/genética , Doenças de von Willebrand/genética , Fator de von Willebrand/genética
7.
Biochim Biophys Acta Gen Subj ; 1865(6): 129892, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33722640

RESUMO

We previously demonstrated that heterozygous Gly197 to Arg mutation in PROC is associated with venous thrombosis due to the mutation abrogating both zymogenic and enzymatic activities of protein C and activated protein C (APC). In this study, we investigated the role of Gly197 on the structure and function of protein C by replacing it with Ala, Lys and Glu in separate constructs. Characterization of protein C mutants indicated their activation by thrombin is improved ~5-20-fold with the order of PC-G197K > PC-G197E > PC-G197A > PC-WT. Interestingly, the cofactor function of thrombomodulin (TM) in promoting the activation of zymogens by thrombin followed the reverse order of PC-WT > PC-G197A > PC-G197E > PC-G197K. The thrombin-generation inhibitory profiles of zymogens in a tissue factor-mediated thrombin generation assay using protein C-deficient plasma with or without supplementation with TM followed the same order of zymogen activation in the purified system. Evaluation of anticoagulant activities of APC derivatives by prothrombinase and aPTT assays revealed a normal activity for APC-G197A but dramatically impaired activity for the other two mutants. In the endothelial cell permeability assay, APC-G197A exhibited normal antiinflammatory activity, but the other two mutants were nearly inactive. These results suggest that Gly197 plays a key role in TM cofactor-dependent protein C activation by thrombin. It facilitates the recognition of protein C by thrombin in the presence of TM but impedes it in the absence of the cofactor. In APC, a small residue at this position is required for the proper folding/reactivity of the active-site pocket of the protease, a hypothesis supported by structural modeling.


Assuntos
Anti-Inflamatórios/farmacologia , Anticoagulantes/farmacologia , Glicina/genética , Mutação , Proteína C/química , Proteína C/metabolismo , Fator V/metabolismo , Glicina/química , Glicina/metabolismo , Humanos , Mutagênese Sítio-Dirigida , Proteína C/genética , Conformação Proteica , Relação Estrutura-Atividade , Trombina/metabolismo , Trombomodulina/metabolismo
8.
Thromb Haemost ; 120(7): 1045-1055, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32422680

RESUMO

Antithrombin (AT) is a serine protease inhibitor that regulates the activity of coagulation proteases of both intrinsic and extrinsic pathways. We identified an AT-deficient patient with a heterozygous Thr90Ser (T90S) mutation who experiences recurrent venous thrombosis. To understand the molecular basis of the clotting defect, we expressed AT-T90S in mammalian cells, purified it to homogeneity, and characterized its properties in established kinetics, binding, and coagulation assays. The possible effect of mutation on the AT structure was also evaluated by molecular modeling. Results demonstrate the inhibitory activity of AT-T90S toward thrombin and factor Xa has been impaired three- to fivefold in both the absence and presence of heparin. The affinity of heparin for AT-T90S has been decreased by four- to fivefold. Kinetic analysis revealed the stoichiometry of AT-T90S inhibition of both thrombin and factor Xa has been elevated by three- to fourfold in both the absence and presence of heparin, suggesting that the reactivity of coagulation proteases with AT-T90S has been elevated in the substrate pathway. The anticoagulant activity of AT-T90S has been significantly impaired as analyzed in the AT-deficient plasma supplemented with AT-T90S. The anti-inflammatory effect of AT-T90S was also decreased. Structural analysis predicts the shorter side-chain of Ser in AT-T90S has a destabilizing effect on the structure of AT and/or the AT-protease complex, possibly increasing the size of an internal cavity and altering a hydrogen-bonding network that modulates conformations of the allosterically linked heparin-binding site and reactive center loop of the serpin. This mutational effect increases the reactivity of AT-T90S with coagulation proteases in the substrate pathway.


Assuntos
Deficiência de Antitrombina III/genética , Antitrombina III/genética , Coagulação Sanguínea/genética , Heterozigoto , Mutação , Trombose Venosa/genética , Adulto , Antitrombina III/metabolismo , Deficiência de Antitrombina III/sangue , Deficiência de Antitrombina III/diagnóstico , Fator Xa/metabolismo , Feminino , Predisposição Genética para Doença , Células HEK293 , Humanos , Fenótipo , Conformação Proteica , Recidiva , Relação Estrutura-Atividade , Trombina/metabolismo , Trombose Venosa/sangue , Trombose Venosa/diagnóstico
10.
J Thromb Haemost ; 18(5): 1141-1153, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32078247

RESUMO

BACKGROUND: Activated protein C (APC) downregulates thrombin generation by inactivating procoagulant cofactors Va and VIIIa by limited proteolysis. We identified two protein C-deficient patients both of whom carry a heterozygous Gly197 to Arg (G197R) mutation in PROC and experience venous thrombosis. OBJECTIVE: The objective of this study was to determine the molecular basis of the clotting defect in patients carrying the G197R mutation. METHODS: We expressed protein C-G197R in mammalian cells and characterized its properties in established coagulation and anti-inflammatory assay systems. RESULTS: The activation of protein C-G197R by thrombin was improved ~10-fold; however, its activation by thrombin was not promoted by thrombomodulin (TM). In a tissue factor-mediated thrombin generation assay, the addition of soluble TM to protein C-deficient plasma, supplemented with protein C-G197R, did not have a significant inhibitory effect on thrombin generation parameters. APC-G197R did not exhibit a significant anticoagulant activity in either purified or plasma-based assay systems. APC-G197R was essentially inactive because it showed no activity in an aPTT assay. Anti-inflammatory activity of APC-G197R was also dramatically impaired as determined by an endothelial cell permeability assay. Structural modeling predicted that the side-chain of Arg cannot be accommodated at this site of APC without a major distortion of the local structure that appears to propagate and adversely affect the reactivity/folding of the catalytic pocket. CONCLUSION: The G197R mutation in patients appears to be functionally equivalent to a heterozygous protein C knockout with half of the protein having no significant activity and thus causing thrombosis.


Assuntos
Proteína C , Trombose , Animais , Testes de Coagulação Sanguínea , Heterozigoto , Humanos , Mutação , Proteína C/genética , Trombina , Trombose/genética
11.
Haematologica ; 105(6): 1712-1722, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31399531

RESUMO

Activated protein C exerts its anticoagulant activity by protein S-dependent inactivation of factors Va and VIIIa by limited proteolysis. We identified a venous thrombosis patient who has plasma protein C antigen level of 63% and activity levels of 44% and 23%, as monitored by chromogenic and clotting assays. Genetic analysis revealed the proband carries compound heterozygous mutations (c.344T>A, p.I73N and c.1181G>A, p.R352Q) in PROC We individually expressed protein C mutations and discovered that thrombin-thrombomodulin activates both variants normally and the resulting activated protein C mutants exhibit normal amidolytic and proteolytic activities. However, while protein S-dependent catalytic activity of activated protein C-R352Q toward factor Va was normal, it was significantly impaired for activated protein C-I73N. These results suggest that the Ile to Asn substitution impairs interaction of activated protein C-I73N with protein S. This conclusion was supported by a normal anticoagulant activity for activated protein C-I73N in protein S-deficient but not in normal plasma. Further analysis revealed Ile to Asn substitution introduces a new glycosylation site on first EGF-like domain of protein C, thereby adversely affecting interaction of activated protein C with protein S. Activated protein C-R352Q only exhibited reduced activity in sub-physiological concentrations of Na+ and Ca2+, suggesting that this residue contributes to metal ion-binding affinity of the protease, with no apparent adverse effect on its function in the presence of physiological levels of metal ions. These results provide insight into the mechanism by which I73N/R352Q mutations in activated protein C cause thrombosis in proband carrying this compound heterozygous mutation.


Assuntos
Fator de Crescimento Epidérmico , Trombose , Glicosilação , Humanos , Mutação , Proteína C/genética , Proteína C/metabolismo , Trombina/metabolismo , Trombose/genética
12.
Arterioscler Thromb Vasc Biol ; 40(2): 483-494, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31875702

RESUMO

OBJECTIVE: Defective PC (protein C) pathway predisposes patients to venous thromboembolism (VTE) and is mostly, but not exclusively, attributed to hereditary PC or PS (protein S) deficiencies and activated PC resistance caused by factor V Leiden mutation. Approach and Results: In a patient with acute mesenteric venous thrombosis and positive family history of VTE associated with the impaired PC pathway function determined by thrombin generation test, we identified a novel heterozygous prothrombin mutation p.Arg541Trp. Two more patients with positive family history of VTE carrying the same mutation were identified in a cohort of another 373 unrelated patients, making an overall prevalence of 0.8%. Family investigation revealed 11 individuals in the 3 pedigrees harboring the heterozygous prothrombin p.Arg541Trp mutation, and 8 of them (72%) had experienced episodes of VTE. Functional studies indicated the mutation moderately decreased procoagulant activity of prothrombin and had mild impact on the inactivation of thrombin by its inhibitor antithrombin. However, the amino acid residue substitution significantly compromised PC activation by thrombin, both in the absence and presence of soluble thrombomodulin, and thus rendered prothrombin function procoagulant biased. CONCLUSIONS: In summary, the prothrombin p.Arg541Trp mutation constitutes a new genetic risk factor of VTE by impairing function of PC pathway and tilting thrombin's procoagulant activity over anticoagulant function.


Assuntos
DNA/genética , Predisposição Genética para Doença , Isquemia Mesentérica/genética , Mutação , Proteína C/metabolismo , Protrombina/genética , Adulto , Análise Mutacional de DNA , Feminino , Heterozigoto , Humanos , Isquemia Mesentérica/sangue , Pessoa de Meia-Idade , Linhagem , Protrombina/metabolismo , Risco
13.
Haemophilia ; 25(2): 316-323, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30648777

RESUMO

INTRODUCTION: Sporadic haemophilia B (HB) without obvious familial history poses challenges for genetic diagnosis and counselling. AIM: To identify the F9 variants in sporadic HB patients and probe the origin of these de novo mutations. METHOD: A total of 294 unrelated HB pedigrees sought genetic diagnosis were analysed in this single-centre study. The F9 gene was analysed by direct sequencing, and AccuCopy technique was adopted to screen for gene copy number variations. Six short tandem repeats approximal or within F9 gene were applied for linkage analysis. Mosaicism of sequence variant was determined by ddNTP Primer Extension method. RESULTS: Sporadic HB patients constituted 36% (61/294) of cases enrolled in current study. The sporadic and familial HB patients shared similar spectrum of F9 variants, with single nucleotide substitution as predominant form of disease-causing mutation and no mutation prone hotspot sites, including CpG dinucleotide sequences, had been identified. Majority of the mothers of sporadic HB patients were F9 mutation carriers (70%, 43/61), and most of them (95%, 41/43) had the inherited bleeding trait traced back to maternal grandfathers. Although most de novo mutations occur in germ cells, 2 maternal grandfathers, who had somatic mosaic mutations of F9, were also revealed to be the source of genetic variations identified in patients. In our cohort, FIX inhibitor incidence was 1%, developed only in patients carrying null mutations. CONCLUSION: The diversity of F9 genetic variants and possible mosaicism of de novo mutation demand extensive study and more cautious in genetic counselling of sporadic HB.


Assuntos
Fator IX/genética , Hemofilia B/genética , China , Códon sem Sentido , Variações do Número de Cópias de DNA , Éxons , Hemofilia B/diagnóstico , Humanos , Masculino , Mutação de Sentido Incorreto , Linhagem , Fenótipo , Polimorfismo Genético , Splicing de RNA
14.
Thromb Haemost ; 117(8): 1478-1485, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28492696

RESUMO

Haemophilia A (HA) is a common X-linked recessive bleeding disorder and almost one half of patients with severe HA are caused by intron 22 inversion (Inv22) in the F8. Inv22 is considered to be almost exclusively of meiotic origin in germ cells during spermatogenesis and only one mosaic Inv22 female carrier with the mutation possibly occurring during mitosis of the embryo has been reported so far. Previously we have identified a novel complex recombination mediated by int22h copies in a sporadic severe HA pedigree and herein we have localised the sequences flanking the breakpoint region using genome walking technique, AccuCopy technique, gene chip and real-time PCR. The disease causing genetic variant registered an 18.1 kb deletion including part of int22h-1 through the intron 23 of F8 and a 113.3 kb duplication of part of int22h-2 through the intron 1 of TMLHE inserted in the religated region of the F8. Two intrinsically linked mechanisms of recombination-dependent DNA replication: microhomology-mediated break-induced replication (MMBIR) followed by break-induced replication (BIR) might be responsible for the incident of the complex recombination during early embryogenesis of the proband's mother.


Assuntos
Fator VIII/genética , Deleção de Genes , Duplicação Gênica , Hemofilia A/genética , Íntrons , Oxigenases de Função Mista/genética , Recombinação Genética , Inversão de Sequência , Passeio de Cromossomo , Cromossomos Humanos X , Análise Mutacional de DNA , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Marcadores Genéticos , Predisposição Genética para Doença , Hemofilia A/sangue , Hemofilia A/diagnóstico , Hemofilia A/embriologia , Hereditariedade , Humanos , Masculino , Pessoa de Meia-Idade , Mosaicismo , Linhagem , Fenótipo , Reação em Cadeia da Polimerase , Índice de Gravidade de Doença
15.
J Clin Pathol ; 70(2): 145-153, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27555433

RESUMO

AIMS: A novel heterozygous variant, FGA c.169_180+2 del (designated fibrinogen Shanghai), was identified in a patient with dysfibrinogenemia with antiphospholipid antibody syndrome (APS) and recurrent venous thrombosis, and in his asymptomatic father. We aimed to reveal the functional implication of structural change caused by this variant. METHODS: Transcription analysis was performed with FGA minigene transfection assay to evaluate the impact of nucleosides deletion on mRNA editing. The fibrinogen isolated from propositus' plasma was used to characterise its functional defects. Fibrin polymerization and clot lysis experiments were performed by optical measurement of turbidity. Thrombin-catalysed fibrinopeptide release was analysed by the reversed-phase, high-performance liquid chromatography. The ultrastructures of fibrin clots were visualised by scanning electron microscopy. RESULTS: FGA c.169_180+2 del led to an aberrant mRNA with exon 2 skipping and encoded an shortened Aα chain with 42 amino acids truncation at its N-terminal. The propositus' fibrinogen had an impaired release of fibrinopeptide A and abnormal polymerization with a significantly prolonged lag time, a slower maximum slope and reduced final turbidity. The fibrin clot formed with propositus' fibrinogen showed thicker fibres with looser network structure. Clot lysis was normal using the purified fibrinogen but was significantly impaired using the plasma sample from propositus, compared with that from his father. CONCLUSIONS: Fibrinogen Shanghai results in N-terminal truncation of Aα chain, which does not interfere with synthesis, assembly or secretion of fibrinogen, but compromises fibrin polymerization and clot formation. APS at least partially contributes to the development of thrombosis in the propositus.


Assuntos
Afibrinogenemia/genética , Síndrome Antifosfolipídica/genética , Fibrina/metabolismo , Fibrinogênio/genética , Mutação , Trombose Venosa/genética , Afibrinogenemia/complicações , Afibrinogenemia/metabolismo , Síndrome Antifosfolipídica/complicações , Síndrome Antifosfolipídica/metabolismo , China , Fibrinogênio/metabolismo , Humanos , Masculino , Trombose Venosa/metabolismo , Adulto Jovem
16.
J Pathol ; 240(1): 108-19, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27319744

RESUMO

Mutations of vacuolar protein sorting-associated protein 33b (VPS33B) cause arthrogryposis, renal dysfunction, and cholestasis syndrome, and a lack of platelet α-granules in the affected patients. Conditional Vps33b knockout mice were developed to investigate the function(s) of Vps33b in platelet α-granule formation. We found that early embryonic deletion of Vps33b was lethal. PF4-Cre-driven megakaryocyte-targeted Vps33b gene deletion greatly diminished Vps33b expression in platelets, but had no effect on platelet α-granule formation and protein content. Tamoxifen-induced, haematopoietic stem cell (HSC)-specific Vps33b deletion completely depleted Vps33b in platelets, caused the absence of α-granules, and increased the number of vacuoles in platelets and megakaryocytes. VPS33B association with VIPAS39, α-tubulin, and SEC22B was identified by co-immunoprecipitation, mass spectra, and immunoblotting in human embryonic kidney 293T (HEK293T) cells. Also, pull-down experiments revealed that VIPAS39 bound to intact VPS33B; in contrast, α-tubulin and SEC22B separately interacted with the sec1-like domains of VPS33B. Vps33b deficiency in megakaryocytes disturbs the redistribution of Vipas39 and Sec22b to proplatelets, and interrupted the co-localization of Sec22b with Vwf-positive vesicles. The data presented in this study suggest that Vps33b is involved in α-granule formation possibly by facilitating the Vwf-positive vesicular trafficking to α-granule-related vacuoles in megakaryocytes. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Megacariócitos/metabolismo , Transporte Proteico/genética , Vesículas Secretórias/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Fator de von Willebrand/metabolismo , Animais , Plaquetas/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Proteínas de Transporte Vesicular/genética
17.
Blood Cells Mol Dis ; 58: 29-34, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27067486

RESUMO

Congenital factor XI (FXI) deficiency is a rare bleeding disorder with unpredictable bleeding tendency. Few studies in a large cohort have been reported regarding associations between FXI activity (FXI:C) or genotypes and bleeding symptoms currently. This study characterized clinical manifestations and mutation spectrum of 57 subjects with FXI deficiency in China. Clinical data were collected and mutations were identified by direct sequencing and determined by mRNA analysis. The result revealed bleeding symptoms were only found in 12 patients (12/57, 21.1%) with severely reduced FXI:C, and prolonged bleeding post injury/surgery as well as easy bruising were the commonest bleeding manifestations presented in respective 5 cases (5/12, 41.7%). A total number of 37 mutations were identified including 19 missense mutations, 9 nonsense mutations, 6 splice site mutations and 3 small deletions. Among them, 4 missense mutations, 5 splice mutations, 3 small deletions and a nonsense mutation were newly detected. W228*, G400V, Q263* and c.1136-4delGTTG with a total frequency of 48.3% were the most four common mutations in Chinese patients. RT-PCR analysis was carried out and confirmed that both c.596-8T>A and c.1136-4delGTTG were pathogenic due to frameshift resulting in respective truncated proteins. Our findings suggested clinical manifestations had little to do with FXI:C or genotypes, which required further study. This study, the largest investigation of FXI deficiency in China revealed that the F11 mutation spectrum of Chinese population was distinct from those of other populations earlier established.


Assuntos
Deficiência do Fator XI/genética , Fator XI/genética , Mutação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Povo Asiático/genética , Criança , Pré-Escolar , China/epidemiologia , Deficiência do Fator XI/complicações , Deficiência do Fator XI/epidemiologia , Feminino , Genótipo , Hemorragia/epidemiologia , Hemorragia/genética , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Linhagem , RNA Mensageiro/genética , Adulto Jovem
18.
Clin Chim Acta ; 458: 78-83, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27101812

RESUMO

BACKGROUND: To develop a digitalized intron 22 inversion (Inv22) detection in patients with severe haemophilia A. METHODS: The design included two tests: A genotyping test included two multiplex pre-amplification of LD-PCR (PLP) with two combinations of five primers to amplify wild-type and chimeric int22h alleles; a carrier mosaicism test was similar to the genotyping test except only amplification of chimeric int22h alleles by removing one primer from each of two combinations. AccuCopy detection was used to quantify PLP products. RESULTS: PLP product patterns in the genotyping test allowed identifying all known Inv22. Quantitative patterns accurately represented the product patterns. The results of 164 samples detected by the genotyping test were consistent with those obtained by LD-PCR detection. Limit of detection (LOD) of the carrier mosaicism test was at least 2% of heterozygous cells with Inv22. Performing the test in two obligate mothers with negative Inv22 from two sporadic pedigrees mosaic rates of blood and hair root of the mother from pedigree 1 were 8.3% and >20%, respectively and negative results were obtained in pedigree 2. CONCLUSIONS: AccuCopy quantification combined with PLP (AQ-PLP) method was confirmed to be rapid and reliable for genotyping Inv22 and highly sensitive to carrier mosaicism detection.


Assuntos
Inversão Cromossômica/genética , Hemofilia A/genética , Íntrons/genética , Reação em Cadeia da Polimerase , Feminino , Genótipo , Hemofilia A/diagnóstico , Humanos , Masculino
20.
Clin Exp Pharmacol Physiol ; 43(2): 149-56, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26510121

RESUMO

Congenital (hypo)dysfibrinogenemia patients may have obstetric complications during their pregnancies. This study aimed to evaluate thromboelastography (TEG) as a potential tool for assessing the tendency for obstetric complications in those patients in a non-pregnant state. A total of 22 female subjects with congenital (hypo)dysfibrinogenemia were recruited. Nine subjects had histories of obstetric complications and the other 13 subjects had at least one uneventful pregnancy without obstetric complications as yet. Detailed clinical investigation and phenotype/genotype detection were carried out, and both kaolin-activated TEG and functional fibrinogen TEG (FF-TEG) were applied in all subjects. Significant differences were identified in all TEG parameters except for R and angle between these two groups (P < 0.05) by covariance analysis. Receiver operating characteristic (ROC) analysis of discrimination between these two groups of patients was performed for TEG parameters. Significantly high odds ratio (OR) of obstetric complications occurrence were demonstrated in K ≥ 3.8 min, maximum amplitude (MA) ≤ 54.2 mm, comprehensive index (CI) ≤ -3 (11.67, 95% CI 1.527-89.121, P < 0.05 in all), and MA-CFF ≤ 12.1 mm (20.00, 95% confidence interval (95% CI) 1.967-203.322, P = 0.002). Moreover, MA-CFF had better prognostic performance, with a corresponding area under the receiver operating curve of 0.923 (range 0.815-1.031, P = 0.001). This study suggests that (hypo)dysfibrinogenemia patients with values outside of the cut-off values of TEG assays under non-pregnant state may have a higher risk of obstetric complications occurring when they are pregnant. No parameters under non-pregnant state in clinical laboratory have ever been reported to be risk factors for obstetric complication occurrence in (hypo)dysfibrinogenemia patients. This study explored such parameters in TEG assays and found that parameters of TEG assays under non-pregnant status might predict the occurrence of obstetric complications, which could provide physicians with important information about whether fibrinogen replacement therapy is required, so as to prevent the occurrence of obstetric complications, especially for patients who are asymptomatic in daily life.


Assuntos
Afibrinogenemia/diagnóstico , Complicações na Gravidez/diagnóstico , Tromboelastografia , Adulto , Afibrinogenemia/complicações , Afibrinogenemia/metabolismo , Feminino , Fibrinogênio/metabolismo , Humanos , Caulim/farmacologia , Gravidez , Complicações na Gravidez/metabolismo , Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA