Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Small ; : e2402673, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844996

RESUMO

Atherosclerosis (AS) is a common cause of coronary heart disease and stroke. The delivery of exogenous H2S and in situ production of O2 within atherosclerotic plaques can help suppress inflammatory cell infiltration and alleviate disease progression. However, the uncontrolled release of gas donors hinders achieving effective drug concentrations and causes toxic effects. Herein, diallyl trisulfide (DATS)-loaded metal-organic cage (MOC)-68-doped MnO2 nanoparticles are developed as a microenvironment-responsive nanodrug with the capacity for the in situ co-delivery of H2S and O2 to inflammatory cells within plaques. This nanomedicine exhibited excellent monodispersity and stability and protected DATS from degradation in the circulation. In vitro studies showed that the nanomedicine reduced macrophage polarization toward an inflammatory phenotype and inhibited the formation of foam cells, while suppressing the expression of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and interleukin-1ß. In a mouse model of ApoE-/- genotype, the nanomedicine reduces the plaque burden, inflammatory infiltration, and hypoxic conditions within the plaques. Furthermore, the treatment process and therapeutic effects can be monitored by magnetic resonance image (MRI), in real time upon Mn2+ release from the acidic- and H2O2- microenvironment-responsive MnO2 nanoparticles. The DATS-loaded MOC-68-doped MnO2-based nanodrug holds great promise as a novel theranostic platform for AS.

2.
Angew Chem Int Ed Engl ; : e202406564, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38766872

RESUMO

How to achieve CO2 electroreduction in high efficiency is a current challenge with the mechanism not well understood yet. The metal-organic cages with multiple metal sites, tunable active centers, and well-defined microenvironments may provide a promising catalyst model. Here, we report self-assembly of Ag4L4 type cuboctahedral cages from coordination dynamic Ag+ ion and triangular imidazolyl ligand 1,3,5-tris(1-benzylbenzimidazol-2-yl) benzene (Ag-MOC-X, X= NO3, ClO4, BF4) via anion template effect. Notably, Ag-MOC-NO3 achieves the highest CO faradaic efficiency in pH-universal electrolytes of 86.1%(acidic), 94.1%(neutral) and 95.3% (alkaline), much higher than those of Ag-MOC-ClO4 and Ag-MOC-BF4 with just different counter anions. In situ attenuated total reflection Fourier transform infrared spectroscopy observes formation of vital intermediate *COOH for CO2-to-CO conversion. The density functional theory calculations suggest that the adsorption of CO2 on unsaturated Ag-site is stabilized by C-H⋅⋅⋅O hydrogen-bonding of CO2 in a microenvironment surrounded by three benzimidazole rings, and the activation of CO2 is dependent on the coordination dynamics of Ag-centers modulated by the hosted anions through Ag⋅⋅⋅X interactions. This work offers a supramolecular electrocatalytic strategy based on Ag-coordination geometry and host-guest interaction regulation of MOCs as high-efficient electrocatalysts for CO2 reduction to CO which is a key intermediate in chemical industry process.

4.
BMC Psychiatry ; 24(1): 130, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365634

RESUMO

BACKGROUND: Electroconvulsive therapy (ECT) is a highly effective treatment for depressive disorder. However, the use of ECT is limited by its cognitive side effects (CSEs), and no specific intervention has been developed to address this problem. As transcranial direct current stimulation (tDCS) is a safe and useful tool for improving cognitive function, the main objective of this study was to explore the ability to use tDCS after ECT to ameliorate the cognitive side effects. METHODS: 60 eligible participants will be recruited within two days after completing ECT course and randomly assigned to receive either active or sham stimulation in a blinded, parallel-design trial and continue their usual pharmacotherapy. The tDCS protocol consists of 30-min sessions at 2 mA, 5 times per week for 2 consecutive weeks, applied through 15-cm2 electrodes. An anode will be placed over the left dorsolateral prefrontal cortex (DLPFC), and a cathode will be placed over the right supraorbital cortex. Cognitive function and depressive symptoms will be assessed before the first stimulation (T0), after the final stimulation (T1), 2 weeks after the final stimulation (T2), and 4 weeks after the final stimulation (T3) using the Cambridge Neuropsychological Test Automated Battery (CANTAB). DISCUSSION: We describe a novel clinical trial to explore whether the administration of tDCS after completing ECT course can accelerates recovery from the CSEs. We hypothesized that the active group would recover faster from the CSEs and be superior to the sham group. If our hypothesis is supported, the use of tDCS could benefit eligible patients who are reluctant to receive ECT and reduce the risk of self-inflicted or suicide due to delays in treatment. TRIAL REGISTRATION DETAILS: The trial protocol is registered with https://www.chictr.org.cn/ under protocol registration number ChiCTR2300071147 (date of registration: 05.06.2023). Recruitment will start in November 2023.


Assuntos
Eletroconvulsoterapia , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Eletroconvulsoterapia/efeitos adversos , Depressão/terapia , Córtex Pré-Frontal/fisiologia , Cognição , Método Duplo-Cego , Ensaios Clínicos Controlados Aleatórios como Assunto
5.
Angew Chem Int Ed Engl ; 63(15): e202317808, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38238997

RESUMO

The self-assembled metal-organic cages (MOCs) have been evolved as a paradigm of enzyme-mimic catalysts since they are able to synergize multifunctionalities inherent in metal and organic components and constitute microenvironments characteristic of enzymatic spatial confinement and versatile host-guest interactions, thus facilitating unconventional organic transformations via unique driving-forces such as weak noncovalent binding and electron/energy transfer. Recently, MOC-based photoreactors emerged as a burgeoning platform of supramolecular photocatalysis, displaying anomalous reactivities and selectivities distinct from bulk solution. This perspective recaps two decades journey of the photoinduced radical reactions by using photoactive metal-organic cages (PMOCs) as artificial reactors, outlining how the cage-confined photocatalysis was evolved from stoichiometric photoreactions to photocatalytic turnover, from high-energy UV-irradiation to sustainable visible-light photoactivation, and from simple radical reactions to multi-level chemo- and stereoselectivities. We will focus on PMOCs that merge structural and functional biomimicry into a single-cage to behave as multi-role photoreactors, emphasizing their potentials in tackling current challenges in organic transformations through single-electron transfer (SET) or energy transfer (EnT) pathways in a simple, green while feasible manner.

6.
Angew Chem Int Ed Engl ; 63(2): e202315053, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37883532

RESUMO

A series of isostructural supramolecular cages with a rhombic dodecahedron shape have been assembled with distinct metal-coordination lability (M8 Pd6 -MOC-16, M=Ru2+ , Fe2+ , Ni2+ , Zn2+ ). The chirality transfer between metal centers generally imposes homochirality on individual cages to enable solvent-dependent spontaneous resolution of Δ8 /Λ8 -M8 Pd6 enantiomers; however, their distinguishable stereochemical dynamics manifests differential chiral phenomena governed by the cage stability following the order Ru8 Pd6 >Ni8 Pd6 >Fe8 Pd6 >Zn8 Pd6 . The highly labile Zn centers endow the Zn8 Pd6 cage with conformational flexibility and deformation, enabling intrigue chiral-Δ8 /Λ8 -Zn8 Pd6 to meso-Δ4 Λ4 -Zn8 Pd6 transition induced by anions. The cage stabilization effect differs from inert Ru2+ , metastable Fe2+ /Ni2+ , and labile Zn2+ , resulting in different chiral-guest induction. Strikingly, solvent-mediated host-guest interactions have been revealed for Δ8 /Λ8 -(Ru/Ni/Fe)8 Pd6 cages to discriminate the chiral recognition of the guests with opposite chirality. These results demonstrate a versatile procedure to control the stereochemistry of metal-organic cages based on the dynamic metal centers, thus providing guidance to maneuver cage chirality at a supramolecular level by virtue of the solvent, anion, and guest to benefit practical applications.

8.
J Am Chem Soc ; 145(42): 23361-23371, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37844297

RESUMO

Molecular recognition lies at the heart of biological functions, which inspires lasting research in artificial host syntheses to mimic biomolecules that can recognize, process, and transport molecules with the highest level of complexity; nonetheless, the design principle and quantifying methodology of artificial hosts for multiple guests (≥4) remain a formidable task. Herein, we report two rhombic dodecahedral cages [(Zn/Fe)8Pd6-MOC-16], which embrace 12 adaptive pockets for multiguest binding with distinct conformational dynamics inherent in metal-center lability and are able to capture 4-24 guests to manifest a surprising complexity of binding scenarios. The exceptional high-order and hierarchical encapsulation phenomena suggest a wide host-guest dynamic-fit, enabling conformational adjustment and adaptation beyond the duality of induced-fit and conformational selection in protein interactions. A critical inspection of the host-guest binding events in solution has been performed by NMR and ESI-MS spectra, highlighting the importance of acquiring a reliable binding repertoire from different techniques and the uncertainty of quantifying the binding affinities of multiplying guests by an oversimplified method.


Assuntos
Biomimética , Conformação Molecular
9.
World J Surg Oncol ; 21(1): 321, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833780

RESUMO

BACKGROUND: The Parkinson's disease (PD) gene family expression is strongly linked to tumor development and progression; PINK1 and PARK2 are essential members of the PD gene family. However, the relationship between PINK1 and PARK2 and esophageal squamous cell carcinoma (ESCC) remains unknown. This research aims to clarify the prognostic value of PINK1 and PARK2 in ESCC. METHODS: PINK1 and PARK2 protein levels in 232 ESCC specimens, and 125 matched adjacent normal tissues were detected by immunohistochemistry. The relationship between PINK1 and PARK2 protein expression and clinicopathological features were analyzed. Kaplan-Meier survival analysis was performed to estimate the prognostic value of the PINK1 and PARK2 proteins in patients. Cox univariate and multivariate analyses were used to assess the risk factors affecting the OS for patients with ESCC. RESULTS: PINK1 and PARK2 had low expression in ESCC. Patients with low PINK1 had worse differentiation and advanced T and TNM stages. Lower PARK2 expression was linked to lymph node metastases and an advanced TNM stage. Furthermore, reduced PINK1 and PARK2 levels were associated with a poor prognosis for ESCC. Cox univariate and multivariate analyses revealed that PINK1, PARK2, and tumor size were closely associated with the prognosis of patients with ESCC, and PARK2 was an independent risk factor for patients with ESCC. Finally, the PINK1 and PARK2 proteins were closely related and shared the same signal pathway. CONCLUSIONS: PINK1 and PARK2 could work as tumor suppressors in ESCC and are likely to become new treatment targets for ESCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas/patologia , Neoplasias Esofágicas/patologia , Biomarcadores Tumorais/genética , Prognóstico , Estimativa de Kaplan-Meier , Proteínas Quinases
10.
Org Biomol Chem ; 21(37): 7602-7610, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37681659

RESUMO

In this study, we report the electrophilic cyclization of N,N-dimethyl-o-alkynylanilines with arylsiloxanes in the presence of [Pd(OAc)2] and Ag2O catalytic system, which leads to the efficient synthesis of indoles, similar to the one that is obtained through Larock indole synthesis. A range of aryl(trimethoxy)silanes with EDGs and EWGs were successfully utilized for the synthesis of a diverse variety of substituted indoles via the cleavage of the C-Si bond. This protocol exhibits good functional group tolerance and wide substrate scope to provide 2,3-diaryl-N-methylindoles in 26-88% yields.

11.
Int J Mol Sci ; 24(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37762159

RESUMO

This study evaluated and compared the functional recovery and histopathological outcomes of treatment involving low-intensity pulsed ultrasound (LIPUS) and methylcobalamin (B12) on brachial plexus injury (BPI) in an experimental rat model. Three days after BPI, the rats were assigned to receive either LIPUS or methylcobalamin alone or in combination consecutively for 12 days. Serial changes in sensory and motor behavioral responses, as well as morphological and immunohistochemical changes for substance P (SP), ionized calcium-binding adapter molecule 1 (iba1), brain-derived neurotrophic factor (BDNF), and S100 were examined 28 days after BPI as the outcome measurements. Early intervention of LIPUS and methylcobalamin, whether alone or in combination, augmented the sensory and motor behavioral recovery as well as modulated SP and iba1 expression in spinal dorsal horns, BDNF, and S100 in the injured nerve. Moreover, the combined therapy with its synergistic effect gave the most beneficial effect in accelerating functional recovery. In view of the effective initiation of early recovery of sensory and motor functions, treatment with LIPUS and methylcobalamin in combination has a potential role in the clinical management of early-phase BPI.

12.
Inorg Chem ; 62(31): 12565-12572, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37498665

RESUMO

Photocatalytic reduction of excess CO2 in the atmosphere to value-added chemicals by visible light can be an effective solution to fuel shortage and global warming. Considering these issues, we designed and successfully synthesized a trinuclear Re(I)-coordinated organic cage (Re-C4R) as the supramolecular photocatalyst. Photophysical, electrochemical properties, and photocatalytic performance comparison of Re-C4R and its mononuclear analogue Re-bpy are discussed in detail. Notably, the covalent linkage of three Re(I) subunits in Re-C4R leads to TONCO = 691 (per Re(I) site in 4 h) more than three times as much as TONCO = 208 of Re-bpy. Compared to Re-bpy, higher current enhancement in the control CV experiments under CO2 was observed for Re-C4R. CO2 adsorption process can be promoted because of the cryptand structure and multiple amine groups of Re-C4R. Moreover, decay lifetimes of Re-C4R are shorter than those of Re-bpy in the ultrafast transient absorption (TA) and photoluminescence (PL) decay spectra, indicating that the trinuclear cryptate structure of Re-C4R could facilitate electron transfer efficiency during CO2 reduction.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 300: 122897, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37229942

RESUMO

The abuse of benzodiazepines is a serious health hazard that can cause damage to the central nervous system.Trace monitoring of benzodiazepines in serum can effectively prevent the damage caused by these drugs. Therefore, in this study, a Fe3O4@PDA@Au core-shell satellite nanomaterial SERS(Surface-Enhanced Raman Scattering) probe that integrates magnetic separation techniques and a multi-hotspot structure was synthetized by in situ growth of gold nanoparticles on the surface of PDA(Polymerized dopamine)-coated Fe3O4. The size and gap of Au nanoparticles on the surface of the SERS probe can be modulated by regulating the amount of HAuCl4 to create 3D multi-hotspot structures. The good dispersion and superparamagnetic properties of this SERS probe enable it to fully contact and load the target molecules in the serum, and the applied magnetic field facilitates separation and enrichment.This process increases the molecular density and number of SERS hotspots, thereby enhancing detection sensitivity. Based on the above considerations, this SERS probe can detect traces of eszopiclone and diazepam in serum at concentrations as low as 1 µg/ml with good linearity, offering promising applications in clinical monitoring of drug concentrations in blood.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Nanopartículas Metálicas/química , Ouro/química , Benzodiazepinas , Prata/química , Análise Espectral Raman/métodos
14.
Talanta ; 258: 124461, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36963151

RESUMO

Early diagnosis of colorectal cancer can significantly improve the overall survival rate of patients, thus selective and sensitive detection of biomarkers in serum samples is vital for early detection and dynamic monitoring of cancer. Nucleoside diphosphate kinase NM23-H2 (NDKB) is an important biomarker and therapeutic target for the diagnosis of colorectal cancer (CRC). Here, a label-free and ultrasensitive biosensor for NDKB protein markers is presented for the first time, combining the characteristic capture selectivity of molecularly imprinted polymers (MIPs) and the ultrasensitivity of surface-enhanced Raman Spectroscopy (SERS) technique. The imprinted cavity serves as the only channel for Raman reporter to approach the SERS substrate, providing highly complementary non-covalent binding sites that selectively capture the target protein based on ionic, hydrogen bonding or hydrophobic interactions. Specific recognition of the NDKB protein will perfectly fill the imprinted cavity, which makes it difficult for the Raman reporter to get close to the SERS substrate, and the Raman signal decreases significantly, while the proteins of other structural sizes can not match the imprinted cavity. Through the change of the Raman signal, the proposed biosensor can realize the ultra-sensitive detection of NDKB, and the limit of detection (LOD) is 0.82 pg/mL. Compared with the traditional immunoassay technology, this combined approach with the advantages of low cost, fast response, high sensitivity and selectivity, provides clinical application potential for the early diagnosis of CRC.


Assuntos
Técnicas Biossensoriais , Neoplasias Colorretais , Impressão Molecular , Humanos , Biomarcadores Tumorais , Impressão Molecular/métodos , Análise Espectral Raman/métodos , Técnicas Biossensoriais/métodos , Proteínas , Neoplasias Colorretais/diagnóstico
15.
Arch Pathol Lab Med ; 147(2): 208-214, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35639603

RESUMO

CONTEXT.­: Identification of rare thalassemia variants requires a combination of multiple diagnostic technologies. OBJECTIVE.­: To investigate a new approach of comprehensive analysis of thalassemia alleles based on third-generation sequencing (TGS) for identification of α- and ß-globin gene variants. DESIGN.­: Enrolled in this study were 70 suspected carriers of rare thalassemia variants. Routine gap-polymerase chain reaction and DNA sequencing were used to detect rare thalassemia variants, and TGS technology was performed to identify α- and ß-globin gene variants. RESULTS.­: Twenty-three cases that carried rare variants in α- and ß-globin genes were identified by the routine detection methods. TGS technology yielded a 7.14% (5 of 70) increment of rare α- and ß-globin gene variants as compared with the routine methods. Among them, the rare deletional genotype of -THAI was the most common variant. In addition, rare variants of CD15 (G>A) (HBA2:c.46G>A), CD117/118(+TCA) (HBA1:c.354_355insTCA), and ß-thalassemia 3.5-kilobase gene deletion were first identified in Fujian Province, China; to the best of our knowledge, this is the second report in the Chinese population. Moreover, HBA1:c.-24C>G, IVS-II-55 (G>T) (HBA1:c.300+55G>T) and hemoglobin (Hb) Maranon (HBA2:c.94A>G) were first identified in the Chinese population. We also identified rare Hb variants of HbC, HbG-Honolulu, Hb Miyashiro, and HbG-Coushatta in this study. CONCLUSIONS.­: TGS technology can effectively and accurately detect deletional and nondeletional thalassemia variants simultaneously in one experiment. Our study also demonstrated the application value of TGS-based comprehensive analysis of thalassemia alleles in the detection of rare thalassemia gene variants.


Assuntos
alfa-Globinas , Talassemia alfa , Globinas beta , Humanos , Alelos , Talassemia alfa/diagnóstico , Talassemia alfa/genética , Talassemia alfa/epidemiologia , Globinas beta/genética , População do Leste Asiático , Genótipo , Hemoglobinas Glicadas , Mutação , alfa-Globinas/genética
16.
Front Psychiatry ; 13: 1011978, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36458119

RESUMO

Introduction: Bipolar disorder (BD) is a common and debilitating mental illness that affects about 400 million people worldwide, decreasing their functionality and quality of life. Medication and psychotherapy are recommended for treatment of BD, while some evidence indicates that exercise could improve the clinical outcome of BD. This study aims to investigate whether exercise intervention could reduce the mood symptoms and inflammation level of BD. Methods: This is a longitudinal, interventional, randomized, and single-blind trial. We plan to recruit 94 patients diagnosed with BD in depression episode. Patients will be randomly assigned to treatment as usual + aerobic exercise group (intervention group) and treatment as usual (TAU) only group, at a ratio of 1:1. The intervention group will undergo 40-min aerobic exercise training twice a week for eight weeks. The primary outcome of this study is the mean change of Hamilton Depression Rating Scale 17 (HAMD 17) scores from baseline to week 8. The Young Manic Rating Scale (YMRS), Self-Rating Depression Scale (SDS), and Interleukin-6 (IL-6), Tumor necrosis factor-α (TNF-α) and C-reactive protein (CRP) levels will also be measured. The measurements will be performed at baseline, immediately after intervention and two months after intervention. Discussion: Aerobic exercise training + treatment is expected to bring more benefits to BD patients than TAU only. This trial might provide stronger evidence of physical exercise efficacy for BD treatment. Clinical trial registration: This study was approved by the Chinese Clinical Trial Registry (Registration Code: ChiCTR2200057159). Registered on 1 March 2022.

17.
Front Pharmacol ; 13: 943119, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452228

RESUMO

Background and Purpose: Irritable bowel syndrome (IBS) is usually associated with chronic gastrointestinal disorders. Its most common subtype is accompanied with diarrhea (IBS-D). The enteric nervous system (ENS) modulates major gastrointestinal motility and functions whose aberration may induce IBS-D. The enteric neurons are susceptible to long-term neurotransmitter level alterations. The patchouli alcohol (PA), extracted from Pogostemonis Herba, has been reported to regulate neurotransmitter release in the ENS, while its effectiveness against IBS-D and the underlying mechanism remain unknown. Experimental Approach: In this study, we established an IBS-D model in rats through chronic restraint stress. We administered the rats with 5, 10, and 20 mg/kg of PA for intestinal and visceral examinations. The longitudinal muscle myenteric plexus (LMMP) neurons were further immunohistochemically stained for quantitative, morphological, and neurotransmitters analyses. Key Results: We found that PA decreased visceral sensitivity, diarrhea symptoms and intestinal transit in the IBS-D rats. Meanwhile, 10 and 20 mg/kg of PA significantly reduced the proportion of excitatory LMMP neurons in the distal colon, decreased the number of acetylcholine (Ach)- and substance P (SP)-positive neurons in the distal colon and restored the levels of Ach and SP in the IBS-D rats. Conclusion and Implications: These findings indicated that PA modulated LMMP excitatory neuron activities, improved intestinal motility and alleviated IBS-induced diarrheal symptoms, suggesting the potential therapeutic efficacy of PA against IBS-D.

18.
Am J Chin Med ; 50(7): 1905-1925, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185014

RESUMO

Patchouli alcohol (PA) has been widely used for the treatment of diarrhea-predominant irritable bowel syndrome (IBS-D) in traditional Chinese medicine, and the related mechanism remains to be fully understood. Our previous study has indicated that PA significantly reduced visceral sensitivity and defecation area in IBS-D rats. In this study, we prepared an IBS-D rat model and observed the dynamic intestinal motility and colonic longitudinal muscle and myenteric plexus (LMMP) neurons, as well as their subtypes at D14, D21, and D28. After PA administration, we observed the effects on the changes in intestinal motility, colonic LMMP neurons, and LMMP Myosin Va in IBS-D rats and their co-localization with inhibitory neurotransmitter-related proteins. The results indicated that PA treatment could alleviate IBS-D symptoms, regulate the abnormal expression of LMMP neurons, increase Myosin Va expression, up-regulate co-localization levels of Myosin Va with neuronal nitric oxide synthase (nNOS), and promote co-localization levels of Myosin Va with vasoactive intestinal polypeptide (VIP). In conclusion, this study demonstrated the neuropathic alterations in the colon of chronic restraint stress-induced IBS-D rat model. PA reversed the neuropathological alteration by affecting the transport process of nNOS and VIP vesicles via Myosin Va and the function of LMMP inhibitory neurons, and these effects were related to the mechanism of enteric nervous system (ENS) remodeling.


Assuntos
Síndrome do Intestino Irritável , Ratos , Animais , Síndrome do Intestino Irritável/tratamento farmacológico , Modelos Animais de Doenças , Diarreia/tratamento farmacológico , Diarreia/etiologia , Diarreia/metabolismo , Neurônios/metabolismo , Adaptação Fisiológica , Miosinas
19.
Food Chem ; 393: 133289, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35689918

RESUMO

Yeast extracts, of which amino acids are the main component, can be directly applied to improve the flavor of final soy sauce. In this study, the potential of commercial yeast extracts was explored from amino acid approach to enhance the flavor quality of soy sauce by shaping the core fermentation microbiota. Alkaline and neutral amino acids favored the competitive benefits of flavor-producing bacteria, while acidic amino acids promoted the stress resistance of the fermentation microbiota, especially the abundance of Lactobacillus, which increased to 18.03-23.78% and became the predominant microbiota. The mass ratio of neutral-nonpolar: neutral-polar: acidic: alkaline amino acids was 40: 18: 27: 15, which provided the optimal improvement of soy sauce aroma. The formulation and activated the metabolic pathways of 3-methyl-1-butyraldehyde, 3-methyl-1-butanol and 2-methyl-1-propanol through Leu and Ile, resulting in a 52.6% increase in malt-like aroma. This study provides a new idea for the regulation of soy sauce fermentation.


Assuntos
Microbiota , Alimentos de Soja , Aminoácidos , Fermentação , Odorantes , Alimentos de Soja/análise
20.
Natl Sci Rev ; 9(5): nwab155, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35663244

RESUMO

The nanoscale chemical spaces inherent in porous organic/coordination cages or solid/liquid materials have been continuously explored for their nanoconfinement effect on selective adsorption and reaction of small gas or organic molecules. Herein, we aim to rationalize the unconventional chemical reactivities motivated by the cage-confined nanospaces in aqueous solutions, where the robust yet permeable nanospaces defined by the open cages facilitate dynamic guest exchange and unusual chemical reactions. The high positive charges on [(Pd/Pt)6(RuL3)8]28+ nanocages drive imidazole-proton equilibrium to display a significantly perturbed pK a shift, creating cage-defined nanospaces in solution with distinct intrinsic basicity and extrinsic acidity. The supramolecular cage effect plays pivotal roles in elaborating robust solution nanospaces, controlling ingress-and-egress molecular processes through open-cage portals and endowing nanocages with transition-state stabilization, amphoteric reactivities and the phase transfer of insoluble molecules, thus promoting chemical transformations in unconventional ways. Consequently, a wide range of application of cage-confined catalysis with anomalous reactivities may be expected based on this kind of open-cage solution medium, which combines cage nanocavity, solution heterogeneity and liquid-phase fluidity to benefit various potential mass transfer and molecular process options.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA