Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38100342

RESUMO

In clinical practice, computed tomography (CT) is an important noninvasive inspection technology to provide patients' anatomical information. However, its potential radiation risk is an unavoidable problem that raises people's concerns. Recently, deep learning (DL)-based methods have achieved promising results in CT reconstruction, but these methods usually require the centralized collection of large amounts of data for training from specific scanning protocols, which leads to serious domain shift and privacy concerns. To relieve these problems, in this article, we propose a hypernetwork-based physics-driven personalized federated learning method (HyperFed) for CT imaging. The basic assumption of the proposed HyperFed is that the optimization problem for each domain can be divided into two subproblems: local data adaption and global CT imaging problems, which are implemented by an institution-specific physics-driven hypernetwork and a global-sharing imaging network, respectively. Learning stable and effective invariant features from different data distributions is the main purpose of global-sharing imaging network. Inspired by the physical process of CT imaging, we carefully design physics-driven hypernetwork for each domain to obtain hyperparameters from specific physical scanning protocol to condition the global-sharing imaging network, so that we can achieve personalized local CT reconstruction. Experiments show that HyperFed achieves competitive performance in comparison with several other state-of-the-art methods. It is believed as a promising direction to improve CT imaging quality and personalize the needs of different institutions or scanners without data sharing. Related codes have been released at https://github.com/Zi-YuanYang/HyperFed.

2.
IEEE Trans Med Imaging ; 42(3): 850-863, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36327187

RESUMO

Lowering the radiation dose in computed tomography (CT) can greatly reduce the potential risk to public health. However, the reconstructed images from dose-reduced CT or low-dose CT (LDCT) suffer from severe noise which compromises the subsequent diagnosis and analysis. Recently, convolutional neural networks have achieved promising results in removing noise from LDCT images. The network architectures that are used are either handcrafted or built on top of conventional networks such as ResNet and U-Net. Recent advances in neural network architecture search (NAS) have shown that the network architecture has a dramatic effect on the model performance. This indicates that current network architectures for LDCT may be suboptimal. Therefore, in this paper, we make the first attempt to apply NAS to LDCT and propose a multi-scale and multi-level memory-efficient NAS for LDCT denoising, termed M3NAS. On the one hand, the proposed M3NAS fuses features extracted by different scale cells to capture multi-scale image structural details. On the other hand, the proposed M3NAS can search a hybrid cell- and network-level structure for better performance. In addition, M3NAS can effectively reduce the number of model parameters and increase the speed of inference. Extensive experimental results on two different datasets demonstrate that the proposed M3NAS can achieve better performance and fewer parameters than several state-of-the-art methods. In addition, we also validate the effectiveness of the multi-scale and multi-level architecture for LDCT denoising, and present further analysis for different configurations of super-net.


Assuntos
Redes Neurais de Computação , Tomografia Computadorizada por Raios X , Razão Sinal-Ruído , Tomografia Computadorizada por Raios X/métodos
3.
IEEE Trans Med Imaging ; 40(11): 3065-3076, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34086564

RESUMO

The current mainstream computed tomography (CT) reconstruction methods based on deep learning usually need to fix the scanning geometry and dose level, which significantly aggravates the training costs and requires more training data for real clinical applications. In this paper, we propose a parameter-dependent framework (PDF) that trains a reconstruction network with data originating from multiple alternative geometries and dose levels simultaneously. In the proposed PDF, the geometry and dose level are parameterized and fed into two multilayer perceptrons (MLPs). The outputs of the MLPs are used to modulate the feature maps of the CT reconstruction network, which condition the network outputs on different geometries and dose levels. The experiments show that our proposed method can obtain competitive performance compared to the original network trained with either specific or mixed geometry and dose level, which can efficiently save extra training costs for multiple geometries and dose levels.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia Computadorizada por Raios X , Redes Neurais de Computação
4.
IEEE Trans Med Imaging ; 40(12): 3459-3472, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34110990

RESUMO

Low-dose computed tomography (LDCT) scans, which can effectively alleviate the radiation problem, will degrade the imaging quality. In this paper, we propose a novel LDCT reconstruction network that unrolls the iterative scheme and performs in both image and manifold spaces. Because patch manifolds of medical images have low-dimensional structures, we can build graphs from the manifolds. Then, we simultaneously leverage the spatial convolution to extract the local pixel-level features from the images and incorporate the graph convolution to analyze the nonlocal topological features in manifold space. The experiments show that our proposed method outperforms both the quantitative and qualitative aspects of state-of-the-art methods. In addition, aided by a projection loss component, our proposed method also demonstrates superior performance for semi-supervised learning. The network can remove most noise while maintaining the details of only 10% (40 slices) of the training data labeled.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Razão Sinal-Ruído , Aprendizado de Máquina Supervisionado , Tomografia Computadorizada por Raios X
5.
IEEE Trans Med Imaging ; 40(10): 2600-2614, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33326376

RESUMO

Due to its noninvasive character, optical coherence tomography (OCT) has become a popular diagnostic method in clinical settings. However, the low-coherence interferometric imaging procedure is inevitably contaminated by heavy speckle noise, which impairs both visual quality and diagnosis of various ocular diseases. Although deep learning has been applied for image denoising and achieved promising results, the lack of well-registered clean and noisy image pairs makes it impractical for supervised learning-based approaches to achieve satisfactory OCT image denoising results. In this paper, we propose an unsupervised OCT image speckle reduction algorithm that does not rely on well-registered image pairs. Specifically, by employing the ideas of disentangled representation and generative adversarial network, the proposed method first disentangles the noisy image into content and noise spaces by corresponding encoders. Then, the generator is used to predict the denoised OCT image with the extracted content features. In addition, the noise patches cropped from the noisy image are utilized to facilitate more accurate disentanglement. Extensive experiments have been conducted, and the results suggest that our proposed method is superior to the classic methods and demonstrates competitive performance to several recently proposed learning-based approaches in both quantitative and qualitative aspects. Code is available at: https://github.com/tsmotlp/DRGAN-OCT.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia de Coerência Óptica , Algoritmos , Retina , Razão Sinal-Ruído
6.
Opt Express ; 27(9): 12289-12307, 2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31052772

RESUMO

Optical coherence tomography (OCT) has become a very promising diagnostic method in clinical practice, especially for ophthalmic diseases. However, speckle noise and low sampling rates have intensively reduced the quality of OCT images, which prevents the development of OCT-assisted diagnosis. Therefore, we propose a generative adversarial network-based approach (named SDSR-OCT) to simultaneously denoise and super-resolve OCT images. Moreover, we trained three different super-resolution models with different upscale factors (2× , 4× and 8×) to adapt to the corresponding downsampling rates. We also quantitatively and qualitatively compared our proposed method with some well-known algorithms. The experimental results show that our approach can effectively suppress speckle noise and can super-resolve OCT images at different scales.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA