Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Plant Physiol Biochem ; 202: 107954, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37573795

RESUMO

Aldehyde dehydrogenase (ALDH) superfamily, comprising enzymes dependent on NAD+ or NADP+, plays an important role in controlling plant growth and development, as well as in responsing to phytohormone and environmental stress. These enzymes possess the ability to prevent toxic effects of aldehydes by converting them into their corresponding carboxylic acids. However, the potential function of ALDH genes in moso bamboo (Phyllostachys edulis) remains largely unknown. In this study, the ALDH gene superfamily in moso bamboo was analyzed through genome-wide screening, the evolutionary relationship of expansion genes was conducted. Tissue-specific expression patterns of ALDH genes were observed in 26 different tissues. Plant hormone and environmental stress responsive cis-elements were identified in the promoter of ALDH genes, which were supported by public databases data on the expression patterns under various abiotic stresses and hormone treatments. ALDH activity was increased in moso bamboo seedlings exposed to drought, compared to control condition. Furthermore, PeALDH2B2 was found to physically interact with PeGPB1 in response to drought. Overall, the study provides a comprehensive analysis of the ALDH family in moso bamboo and contributes to our understanding of the function of ALDH genes in growth, development, and adaptation to drought stresses.


Assuntos
Aldeído Desidrogenase , Secas , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Poaceae/genética , Poaceae/metabolismo , Perfilação da Expressão Gênica , Regiões Promotoras Genéticas/genética , Reguladores de Crescimento de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
J Hazard Mater ; 441: 129909, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36099736

RESUMO

Soil pollution caused by cadmium (Cd) is a serious concern. Phytoremediation is a popular technology in the remediation of Cd-contaminated soil. Salix matsudana var. matsudana f. umbraculifera Rehd. has been characterized as a high Cd-accumulating and tolerant willow (HCW). Here, transcriptome and proteome profiling, along with morphology analyses were performed to explore molecular cross-talk involved in Cd tolerance. Our results showed that 73%- 83% of the Cd in roots accumulated in the cell walls and root xylem cell walls were significantly thickened. From transcriptome and proteome analysis, a total of 153 up-regulated differentially-expressed genes and 655 up-regulated differentially-expressed proteins were found in common between two comparison groups (1 d and 4 d vs. respective control). Furthermore, phenylpropanoid biosynthesis was identified as a key pathway in response to Cd stress. In this pathway, lignin biosynthesis genes or proteins were significantly up-regulated, and lignin content increased significantly in roots under Cd stress. Two Cd-induced genes cinnamoyl-CoA reductase 1 (SmCCR1) and cinnamyl alcohol dehydrogenase 7 (SmCAD7) from HCW increased the lignin content and enhanced Cd tolerance in transgenic poplar calli. These results lay the foundation for further clarifying the molecular mechanisms of Cd tolerance in woody plants.


Assuntos
Salix , Poluentes do Solo , Cádmio/análise , Cádmio/toxicidade , Lignina , Raízes de Plantas/química , Raízes de Plantas/genética , Proteoma , Salix/genética , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Transcriptoma
3.
Front Plant Sci ; 13: 859386, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574076

RESUMO

Sedum plumbizincicola (Crassulaceae), a cadmium (Cd)/zinc (Zn)/lead (Pb) hyperaccumulator native to Southeast China, is potentially useful for the phytoremediation of heavy metal-contaminated soil. Basic leucine zipper (bZIP) transcription factors play vital roles in plant growth, development, and abiotic stress responses. However, there has been minimal research on the effects of Cd stress on the bZIP gene family in S. plumbizincicola. In this study, 92 SpbZIP genes were identified in the S. plumbizincicola genome and then classified into 12 subgroups according to their similarity to bZIP genes in Arabidopsis. Gene structure and conserved motif analyses showed that SpbZIP genes within the same subgroup shared similar intron-exon structures and motif compositions. In total, eight pairs of segmentally duplicated SpbZIP genes were identified, but there were no tandemly duplicated SpbZIP genes. Additionally, the duplicated SpbZIP genes were mainly under purifying selection pressure. Hormone-responsive, abiotic and biotic stress-responsive, and plant development-related cis-acting elements were detected in the SpbZIP promoter sequences. Expression profiles derived from RNA-seq and quantitative real-time PCR analyses indicated that the expression levels of most SpbZIP genes were upregulated under Cd stress conditions. Furthermore, a gene co-expression network analysis revealed that most edge genes regulated by hub genes were related to metal transport, responses to stimuli, and transcriptional regulation. Because its expression was significantly upregulated by Cd stress, the hub gene SpbZIP60 was selected for a functional characterization to elucidate its role in the root response to Cd stress. In a transient gene expression analysis involving Nicotiana benthamiana leaves, SpbZIP60 was localized in the nucleus. The overexpression of SpbZIP60 enhanced the Cd tolerance of transgenic Arabidopsis plants by inhibiting ROS accumulation, protecting the photosynthetic apparatus, and decreasing the Cd content. These findings may provide insights into the potential roles of the bZIP family genes during the S. plumbizincicola response to Cd stress.

4.
Front Plant Sci ; 13: 884443, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620688

RESUMO

Ma bamboo (Dendrocalamus latiflorus Munro) is the most widely cultivated clumping bamboo in Southern China and is valuable for both consumption and wood production. The development of bamboo shoots involving the occurrence of lateral buds is unique, and it affects both shoot yield and the resulting timber. Plant-specific TCP transcription factors are involved in plant growth and development, particularly in lateral bud outgrowth and morphogenesis. However, the comprehensive information of the TCP genes in Ma bamboo remains poorly understood. In this study, 66 TCP transcription factors were identified in Ma bamboo at the genome-wide level. Members of the same subfamily had conservative gene structures and conserved motifs. The collinear analysis demonstrated that segmental duplication occurred widely in the TCP transcription factors of Ma bamboo, which mainly led to the expansion of a gene family. Cis-acting elements related to growth and development and stress response were found in the promoter regions of DlTCPs. Expression patterns revealed that DlTCPs have tissue expression specificity, which is usually highly expressed in shoots and leaves. Subcellular localization and transcriptional self-activation experiments demonstrated that the five candidate TCP proteins were typical self-activating nuclear-localized transcription factors. Additionally, the transcriptome analysis of the bamboo shoot buds at different developmental stages helped to clarify the underlying functions of the TCP members during the growth of bamboo shoots. DlTCP12-C, significantly downregulated as the bamboo shoots developed, was selected to further verify its molecular function in Arabidopsis. The DlTCP12-C overexpressing lines exhibited a marked reduction in the number of rosettes and branches compared with the wild type in Arabidopsis, suggesting that DlTCP12-C conservatively inhibits lateral bud outgrowth and branching in plants. This study provides useful insights into the evolutionary patterns and molecular functions of the TCP transcription factors in Ma bamboo and provides a valuable reference for further research on the regulatory mechanism of bamboo shoot development and lateral bud growth.

5.
Int J Mol Sci ; 23(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35457281

RESUMO

In nature, heavy metal (HM) stress is one of the most destructive abiotic stresses for plants. Heavy metals produce toxicity by targeting key molecules and important processes in plant cells. The mitogen-activated protein kinase (MAPK) cascade transfers the signals perceived by cell membrane surface receptors to cells through phosphorylation and dephosphorylation and targets various effector proteins or transcriptional factors so as to result in the stress response. Signal molecules such as plant hormones, reactive oxygen species (ROS), and nitric oxide (NO) can activate the MAPK cascade through differentially expressed genes, the activation of the antioxidant system and synergistic crosstalk between different signal molecules in order to regulate plant responses to HMs. Transcriptional factors, located downstream of MAPK, are key factors in regulating plant responses to heavy metals and improving plant heavy metal tolerance and accumulation. Thus, understanding how HMs activate the expression of the genes related to the MAPK cascade pathway and then phosphorylate those transcriptional factors may allow us to develop a regulation network to increase our knowledge of HMs tolerance and accumulation. This review highlighted MAPK pathway activation and responses under HMs and mainly focused on the specificity of MAPK activation mediated by ROS, NO and plant hormones. Here, we also described the signaling pathways and their interactions under heavy metal stresses. Moreover, the process of MAPK phosphorylation and the response of downstream transcriptional factors exhibited the importance of regulating targets. It was conducive to analyzing the molecular mechanisms underlying heavy metal accumulation and tolerance.


Assuntos
Metais Pesados , Proteínas Quinases Ativadas por Mitógeno , Plantas , Fatores de Transcrição , Metais Pesados/metabolismo , Metais Pesados/toxicidade , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Óxido Nítrico/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Mitochondrial DNA B Resour ; 7(3): 495-497, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35311208

RESUMO

Toona ciliata var. pubescens is classified as Toona subgenus of Meliaceae family, which belongs to a large deciduous tree species. It is also a kind of precious timber tree species and has a certain medicinal value. Here, the first complete chloroplast genome (cpDNA) sequence of T. ciliata var. pubescens was determined using the Illumina sequencing platform. The cpDNA genome is 159,481 bp in length, containing a large single-copy region (LSC) of 87,176 bp and a small single-copy region (SSC) of 18,381 bp, which were separated by a pair of inverted repeats (IRs) regions of 26,962 bp. The genome contains 138 genes, including 90 protein-coding genes, eight ribosomal RNA genes, and 40 transfer RNA genes. The phylogenetic analysis based on 19 cpDNA genomes showed a close relationship with Toona ciliate.

7.
Plants (Basel) ; 11(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35050103

RESUMO

Heavy-metal ATPase (HMA), an ancient family of transition metal pumps, plays important roles in the transmembrane transport of transition metals such as Cu, Zn, Cd, and Co. Although characterization of HMAs has been conducted in several plants, scarcely knowledge was revealed in Sedum plumbizincicola, a type of cadmium (Cd) hyperaccumulator found in Zhejiang, China. In this study, we first carried out research on genome-wide analysis of the HMA gene family in S. plumbizincicola and finally identified 8 SpHMA genes and divided them into two subfamilies according to sequence alignment and phylogenetic analysis. In addition, a structural analysis showed that SpHMAs were relatively conserved during evolution. All of the SpHMAs contained the HMA domain and the highly conserved motifs, such as DKTGT, GDGxNDxP, PxxK S/TGE, HP, and CPx/SPC. A promoter analysis showed that the majority of the SpHMA genes had cis-acting elements related to the abiotic stress response. The expression profiles showed that most SpHMAs exhibited tissue expression specificity and their expression can be regulated by different heavy metal stress. The members of Zn/Co/Cd/Pb subgroup (SpHMA1-3) were verified to be upregulated in various tissues when exposed to CdCl2. Here we also found that the expression of SpHMA7, which belonged to the Cu/Ag subgroup, had an upregulated trend in Cd stress. Overexpression of SpHMA7 in transgenic yeast indicated an improved sensitivity to Cd. These results provide insights into the evolutionary processes and potential functions of the HMA gene family in S. plumbizincicola, laying a theoretical basis for further studies on figuring out their roles in regulating plant responses to biotic/abiotic stresses.

8.
Bioinformatics ; 37(20): 3686-3687, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-33848326

RESUMO

SUMMARY: Sequence Processing and Data Extraction (SPDE) has eight modules comprising 100 basic functions ranging from sequence extraction, format conversion to data reorganization and mining, and all of these functions can be completed by point-and-click icons. SPDE also incorporates eight public analyses tools; thus, SPDE is a comprehensive bioinformatics platform for big biological data analysis. AVAILABILITY AND IMPLEMENTATION: SPDE built by Python can run on 32-bit, 64-bit Windows and MacOS systems. It can be downloaded from https://github.com/simon19891216/SPDEv1.2.git. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

9.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525549

RESUMO

Lateral root (LR) formation promotes plant resistance, whereas high-level ethylene induced by abiotic stress will inhibit LR emergence. Considering that local auxin accumulation is a precondition for LR generation, auxin-induced genes inhibiting ethylene synthesis may thus be important for LR development. Here, we found that auxin response factor 4 (SaARF4) in Sedum alfredii Hance could be induced by auxin. The overexpression of SaARF4 decreased the LR number and reduced the vessel diameters. Meanwhile, the auxin distribution mode was altered in the root tips and PIN expression was also decreased in the overexpressed lines compared with the wild-type (WT) plants. The overexpression of SaARF4 could reduce ethylene synthesis, and thus, the repression of ethylene production decreased the LR number of WT and reduced PIN expression in the roots. Furthermore, the quantitative real-time PCR, chromatin immunoprecipitation sequencing, yeast one-hybrid, and dual-luciferase assay results showed that SaARF4 could bind the promoter of 1-aminocyclopropane-1-carboxylate oxidase 4 (SaACO4), associated with ethylene biosynthesis, and could downregulate its expression. Therefore, we concluded that SaARF4 induced by auxin can inhibit ethylene biosynthesis by repressing SaACO4 expression, and this process may affect auxin transport to delay LR development.


Assuntos
Aminoácido Oxirredutases/genética , Ácidos Indolacéticos/farmacologia , Sedum/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Imunoprecipitação da Cromatina , Etilenos/biossíntese , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Sedum/efeitos dos fármacos , Sedum/genética , Sedum/metabolismo , Fatores de Transcrição/genética
10.
Int J Mol Sci ; 21(9)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365876

RESUMO

SaNramp6 in Sedum alfredii encodes a membrane-localized metal transporter. We isolated the SaNramp6h allele from the hyperaccumulating ecotype (HE) of S. alfredii. When this allele was expressed in transgenic yeast and Arabidopsis thaliana, it enhanced their cadmium (Cd) sensitivity by increased Cd transport and accumulation. We isolated another allele, SaNramp6n, from a nonhyperaccumulating ecotype (NHE) of S. alfredii. Amino acid sequence comparisons revealed three amino acid differences between SaNramp6h and SaNramp6n. We investigated the Cd transport activity of the Nramp6 allele, and determined which residues are essential for the transport activity. We conducted structure-function analyses of SaNramp6 based on site-directed mutagenesis and functional assays of the mutants in yeast and Arabidopsis. The three residues that differed between SaNramp6h and SaNramp6n were mutated. Only the L157P mutation of SaNramp6h impaired Cd transport. The other mutations, S218N and T504A, did not affect the transport activity of SaNramp6h, indicating that these residues are not essential for metal selectivity. Transgenic plants overexpressing SaNramp6hL157P showed altered metal accumulation in shoots and roots. Our results suggest that the conserved site L157 is essential for the high metal transport activity of SaNramp6h. This information may be useful for limiting or increasing Cd transport by other plant natural resistance associated macrophage protein (NRAMP) proteins.


Assuntos
Substituição de Aminoácidos , Cádmio/metabolismo , Proteínas de Transporte de Cátions/genética , Mutação Puntual , Sedum/genética , Sedum/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Proteínas de Transporte de Cátions/metabolismo , Clonagem Molecular , Fenótipo , Poluentes do Solo/metabolismo
11.
Front Plant Sci ; 11: 142, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32184794

RESUMO

The heat shock transcription factor (Hsf) family, an important member in plant stress response, affects cadmium (Cd) tolerance in plants. In this study, we identified and functionally characterized a transcript of the Hsf A4 subgroup from Sedum alfredii. Designated as SaHsfA4c, the open reading frame was 1,302 bp long and encoded a putative protein of 433 amino acids containing a complete DNA-binding domain (DBD). Heterologous expression of SaHsfA4c in yeast enhanced Cd stress tolerance and accumulation, whereas expression of the alternatively spliced transcript InSaHsfA4c which contained an intron and harbored an incomplete DBD, resulted in relatively poor Cd stress tolerance and low Cd accumulation in transgenic yeast. The function of SaHsfA4c under Cd stress was characterized in transgenic Arabidopsis and non-hyperaccumulation ecotype S. alfredii. SaHsfA4c was able to rescue the Cd sensitivity of the Arabidopsis athsfa4c mutant. SaHsfA4c reduced reactive oxygen species (ROS) accumulation and increased the expression of ROS-scavenging enzyme genes and Hsps in transgenic lines. The present results suggest that SaHsfA4c increases plant resistance to stress by up-regulating the activities of ROS-scavenging enzyme and the expression of Hsps.

12.
Tree Physiol ; 40(8): 1126-1142, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32175583

RESUMO

Salix matsudana Koidz is a low cadmium (Cd)-accumulating willow, whereas its cultivated variety, Salix matsudana var. matsudana f. umbraculifera Rehd., is a high Cd-accumulating and tolerant willow (HCW). The physiological and molecular mechanisms underlying differential Cd accumulation and tolerance in the two Salix species are poorly understood. Here, we confirmed that the differential Cd translocation capacity from roots to the shoots leads to the differential Cd accumulation in their aboveground parts between these two willow genotypes. Cadmium accumulation happens preferentially in the transport pathway, and Cd is mainly located in the vacuolar, cell wall and intercellular space in HCW bark by cadmium location analysis at tissue and subcellular levels. Comparative transcriptome analysis revealed that higher expressions of several metal transporter genes (ATP-binding cassette transporters, K+ transporters/channels, yellow stripe-like proteins, zinc-regulated transporter/iron-regulated transporter-like proteins, etc.) are involved in root uptake and translocation capacity in HCW; meanwhile, ascorbate-glutathione metabolic pathways play essential roles in Cd detoxification and higher tolerance of the Cd-accumulator HCW. These results lay the foundation for further understanding the molecular mechanisms of Cd accumulation in woody plants and provide new insights into molecular-assisted-screening woody plant varieties for phytoremediation.


Assuntos
Salix/genética , Biodegradação Ambiental , Cádmio , Genótipo , Glutationa , Raízes de Plantas/química , Raízes de Plantas/genética
13.
Sci Rep ; 7(1): 13318, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29042608

RESUMO

The plant natural resistance-associated macrophage protein (Nramp) family plays an important role in tolerance to heavy metal stress. However, few Nramps have been functionally characterized in the heavy metal-accumulating plant Sedum alfredii. Here, Nramp6 was cloned and identified from S. alfredii and its function analyzed in transgenic Arabidopsis thaliana. SaNramp6 cDNA contains an open reading frame of 1, 638 bp encoding 545 amino acids. SaNramp6's expression can be induced by cadmium (Cd) stress, and, after treatment, it peaked at one week and 12 h in the roots and leaves, respectively. SaNramp6 localized to the plasma membrane in protoplasts isolated from A. thaliana, Nicotiana benthamiana lower leaf and onion (Allium cepa) epidermal cells. The heterologous expression of SaNramp6 in the Δycf1 yeast mutant increased the Cd content in yeast cells. SaNramp6 also rescued the low Cd accumulation of the A. thaliana nramp1 mutant. Transgenic A. thaliana expressing SaNramp6 exhibited high Cd accumulation levels, as determined by a statistical analysis of the Cd concentration, translocation factors and net Cd2+ fluxes under Cd stress. Thus, SaNramp6 may play a significant role in improving Cd accumulation, and the gene may be useful for the biotechnological development of transgenic plants for phytoremediation.


Assuntos
Arabidopsis/metabolismo , Cádmio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Sedum/genética , Arabidopsis/genética , Proteínas de Transporte de Cátions/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA