Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Cancer Res Clin Oncol ; 150(6): 312, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900156

RESUMO

PURPOSE: Targeted therapies have markedly improved the prognosis of lung cancer patients; nevertheless, challenges persist, including limited beneficiary populations and the emergence of drug resistance. This study investigates the molecular mechanisms of mutant TP53 in lung cancer, aiming to contribute to novel strategies for targeted therapy. METHODS: The TCGA database was employed to delineate the mutational landscape of TP53 in lung cancer patients. Differential gene expression between TP53-mutant and wild-type patients was analyzed, followed by functional enrichment. DSG3 protein expression in lung cancer patients was assessed using IHC, and its impact on prognosis was analyzed in the TCGA database. The influence of TP53 on the downstream gene DSG3 was investigated using qPCR, ChIP-qPCR, and luciferase reporter gene assays. Protein enrichment in the DSG3 promoter region was examined through IP-MS, and the regulatory role of the HIF1-α/TP53 complex on DSG3 was explored using Co-IP, luciferase assays, and ChIP-qPCR. Molecular interactions between TP53 (R273H) and HIF1-α were detected through immunoprecipitation and molecular docking. The effects and mechanisms of DSG3 on lung cancer phenotypes were assessed through WB, transwell, and wound healing assays. RESULTS: TP53 mutations were present in 47.44% of patients, predominantly as missense mutations. DSG3 exhibited high expression in TP53-mutant lung cancer patients, and this elevated expression correlated with a poorer prognosis. TP53 interference led to a reduction in DSG3 mRNA expression, with TP53 mutant P53 enriching at the P2 site of the DSG3 promoter region, a recruitment facilitated by HIF1-α. The DBD region of TP53 (R273H) demonstrated interaction with HIF1-α. DSG3, activated through Ezrin phosphorylation, played a role in promoting invasion and metastasis. CONCLUSIONS: Mutant TP53 facilitates lung cancer cell invasion by modulating desmoglein 3.


Assuntos
Desmogleína 3 , Neoplasias Pulmonares , Mutação , Invasividade Neoplásica , Proteína Supressora de Tumor p53 , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem Celular Tumoral , Desmogleína 3/genética , Desmogleína 3/metabolismo , Regulação Neoplásica da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Prognóstico , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
2.
Exp Biol Med (Maywood) ; 241(14): 1531-9, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27190263

RESUMO

DNA methylation is an epigenetic DNA modification catalyzed by DNA methyltransferase 1 (DNMT1). The purpose of this study was to investigate DNMT1 gene and protein expression and the effects of methylation status on tumor suppressor genes in human non-small cell lung cancer (NSCLC) cell lines grown in vitro and in vivo Human lung adenocarcinoma cell lines, A549 and H838, were grown in vitro and inoculated subcutaneously into nude mice to form tumors and were then treated with the DNA methylation inhibitor, 5-aza-2'-deoxycytidine, with and without treatment with the benzamide histone deacetylase inhibitor, entinostat (MS-275). DNMT1 protein expression was quantified by Western blot. Promoter methylation status of tumor suppressor genes (RASSF1A, ASC, APC, MGMT, CDH13, DAPK, ECAD, P16, and GATA4) was evaluated by methylation-specific polymerase chain reaction. Methylation status of the tumor suppressor genes was regulated by the DNMT1 gene, with the decrease of DNMT1 expression following DNA methylation treatment. Demethylation of tumor suppressor genes (APC, ASC, and RASSF1A) restored tumor growth in nude mice. The results of this study support a role for methylation of DNA as a potential epigenetic clinical biomarker of prognosis or response to therapy and for DNMT1 as a potential therapeutic target in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA , Genes Supressores de Tumor , Animais , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Benzamidas/farmacologia , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , DNA (Citosina-5-)-Metiltransferase 1 , Decitabina , Inibidores Enzimáticos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Regiões Promotoras Genéticas , Piridinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA