Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(7): 3654-3666, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38300758

RESUMO

DNA Methylation is a significant epigenetic modification that can modulate chromosome states, but its role in orchestrating chromosome organization has not been well elucidated. Here we systematically assessed the effects of DNA Methylation on chromosome organization with a multi-omics strategy to capture DNA Methylation and high-order chromosome interaction simultaneously on mouse embryonic stem cells with DNA methylation dioxygenase Tet triple knock-out (Tet-TKO). Globally, upon Tet-TKO, we observed weakened compartmentalization, corresponding to decreased methylation differences between CpG island (CGI) rich and poor domains. Tet-TKO could also induce hypermethylation for the CTCF binding peaks in TAD boundaries and chromatin loop anchors. Accordingly, CTCF peak generally weakened upon Tet-TKO, which results in weakened TAD structure and depletion of long-range chromatin loops. Genes that lost enhancer-promoter looping upon Tet-TKO showed DNA hypermethylation in their gene bodies, which may compensate for the disruption of gene expression. We also observed distinct effects of Tet1 and Tet2 on chromatin organization and increased DNA methylation correlation on spatially interacted fragments upon Tet inactivation. Our work showed the broad effects of Tet inactivation and DNA methylation dynamics on chromosome organization.


Assuntos
Cromatina , Ilhas de CpG , Metilação de DNA , Proteínas de Ligação a DNA , Dioxigenases , Proteínas Proto-Oncogênicas , Animais , Camundongos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Dioxigenases/metabolismo , Dioxigenases/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Cromatina/metabolismo , Cromatina/genética , Ilhas de CpG/genética , Células-Tronco Embrionárias Murinas/metabolismo , Fator de Ligação a CCCTC/metabolismo , Fator de Ligação a CCCTC/genética , Epigênese Genética , Regiões Promotoras Genéticas , Cromossomos/genética
2.
Brain ; 146(8): 3347-3363, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36869767

RESUMO

Recurrent proximal 16p11.2 deletion (16p11.2del) is a risk factor for diverse neurodevelopmental disorders with incomplete penetrance and variable expressivity. Although investigation with human induced pluripotent stem cell models has confirmed disruption of neuronal development in 16p11.2del neuronal cells, which genes are responsible for abnormal cellular phenotypes and what determines the penetrance of neurodevelopmental abnormalities are unknown. We performed haplotype phasing of the 16p11.2 region in a 16p11.2del neurodevelopmental disorders cohort and generated human induced pluripotent stem cells for two 16p11.2del families with distinct residual haplotypes and variable neurodevelopmental disorder phenotypes. Using transcriptomic profiles and cellular phenotypes of the human induced pluripotent stem cell-differentiated cortex neuronal cells, we revealed MAPK3 to be a contributor to dysfunction in multiple pathways related to early neuronal development, with altered soma and electrophysiological properties in mature neuronal cells. Notably, MAPK3 expression in 16p11.2del neuronal cells varied on the basis of a 132 kb 58 single nucleotide polymorphism (SNP) residual haplotype, with the version composed entirely of minor alleles associated with reduced MAPK3 expression. Ten SNPs on the residual haplotype were mapped to enhancers of MAPK3. We functionally validated six of these SNPs by luciferase assay, implicating them in the residual haplotype-specific differences in MAPK3 expression via cis-regulation. Finally, the analysis of three different cohorts of 16p11.2del subjects showed that this minor residual haplotype is associated with neurodevelopmental disorder phenotypes in 16p11.2del carriers.


Assuntos
Deleção Cromossômica , Células-Tronco Pluripotentes Induzidas , Humanos , Haplótipos , Fenótipo , Diferenciação Celular
3.
Nature ; 615(7952): 526-534, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36890225

RESUMO

The nucleolus is the most prominent membraneless condensate in the nucleus. It comprises hundreds of proteins with distinct roles in the rapid transcription of ribosomal RNA (rRNA) and efficient processing within units comprising a fibrillar centre and a dense fibrillar component and ribosome assembly in a granular component1. The precise localization of most nucleolar proteins and whether their specific localization contributes to the radial flux of pre-rRNA processing have remained unknown owing to insufficient resolution in imaging studies2-5. Therefore, how these nucleolar proteins are functionally coordinated with stepwise pre-rRNA processing requires further investigation. Here we screened 200 candidate nucleolar proteins using high-resolution live-cell microscopy and identified 12 proteins that are enriched towards the periphery of the dense fibrillar component (PDFC). Among these proteins, unhealthy ribosome biogenesis 1 (URB1) is a static, nucleolar protein that ensures 3' end pre-rRNA anchoring and folding for U8 small nucleolar RNA recognition and the subsequent removal of the 3' external transcribed spacer (ETS) at the dense fibrillar component-PDFC boundary. URB1 depletion leads to a disrupted PDFC, uncontrolled pre-rRNA movement, altered pre-rRNA conformation and retention of the 3' ETS. These aberrant 3' ETS-attached pre-rRNA intermediates activate exosome-dependent nucleolar surveillance, resulting in decreased 28S rRNA production, head malformations in zebrafish and delayed embryonic development in mice. This study provides insight into functional sub-nucleolar organization and identifies a physiologically essential step in rRNA maturation that requires the static protein URB1 in the phase-separated nucleolus.


Assuntos
Nucléolo Celular , Exossomos , Precursores de RNA , Processamento Pós-Transcricional do RNA , RNA Ribossômico , Peixe-Zebra , Animais , Camundongos , Nucléolo Celular/metabolismo , Desenvolvimento Embrionário , Exossomos/metabolismo , Cabeça/anormalidades , Microscopia , Proteínas Nucleares/metabolismo , Precursores de RNA/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA Ribossômico 28S/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
4.
J Immunol Res ; 2021: 9818203, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34545332

RESUMO

[This corrects the article DOI: 10.1155/2021/5547635.].

5.
Science ; 373(6554): 547-555, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34326237

RESUMO

RNA polymerase I (Pol I) transcription takes place at the border of the fibrillar center (FC) and the dense fibrillar component (DFC) in the nucleolus. Here, we report that individual spherical FC/DFC units are coated by the DEAD-box RNA helicase DDX21 in human cells. The long noncoding RNA (lncRNA) SLERT binds to DDX21 RecA domains to promote DDX21 to adopt a closed conformation at a substoichiometric ratio through a molecular chaperone-like mechanism resulting in the formation of hypomultimerized and loose DDX21 clusters that coat DFCs, which is required for proper FC/DFC liquidity and Pol I processivity. Our results suggest that SLERT is an RNA regulator that controls the biophysical properties of FC/DFCs and thus ribosomal RNA production.


Assuntos
Nucléolo Celular/metabolismo , RNA Helicases DEAD-box/metabolismo , RNA Polimerase I/metabolismo , RNA Longo não Codificante/metabolismo , Linhagem Celular , RNA Helicases DEAD-box/química , DNA Ribossômico/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Conformação Proteica , Domínios Proteicos , Multimerização Proteica , Transcrição Gênica
6.
J Immunol Res ; 2021: 5547635, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34036107

RESUMO

OBJECTIVE: To investigate microRNA (miRNA) expression profiles in individuals with systemic lupus erythematosus (SLE) and identify the valuable miRNA biomarkers in diagnosing and monitoring SLE. METHODS: Next-generation sequencing (NGS) was performed to assess miRNA amounts in peripheral blood mononuclear cells (PBMCs) from four SLE cases and four healthy controls. Quantitative polymerase chain reaction (qPCR) was carried out for validating candidate miRNAs in 32 SLE cases and 32 healthy controls. In addition, receiver operating characteristic (ROC) curve analysis was completed to evaluate diagnostic performance. Finally, the associations of candidate miRNAs with various characteristics of SLE were analyzed. RESULTS: A total of 157 miRNAs were upregulated, and 110 miRNAs were downregulated in PBMCs from SLE cases in comparison to healthy controls, of which the increase of miR-183-5p and decrease of miR-374b-3p were validated by qPCR and both showed good diagnostic performance for SLE diagnosis. Besides, miR-183-5p expression levels displayed a positive association with SLE disease activity index (SLEDAI) and anti-dsDNA antibody amounts. CONCLUSION: Our data indicated that miR-183-5p is a promising biomarker of SLE.


Assuntos
Leucócitos Mononucleares/imunologia , Lúpus Eritematoso Sistêmico/diagnóstico , MicroRNAs/sangue , Adulto , Anticorpos Antinucleares/sangue , Biomarcadores/sangue , Biomarcadores/metabolismo , Estudos de Casos e Controles , Feminino , Perfilação da Expressão Gênica , Voluntários Saudáveis , Humanos , Leucócitos Mononucleares/metabolismo , Lúpus Eritematoso Sistêmico/sangue , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Masculino , MicroRNAs/metabolismo , Curva ROC , Regulação para Cima/imunologia , Adulto Jovem
7.
RNA ; 27(6): 725-733, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33846273

RESUMO

The mammalian cell nucleus contains different types of membrane-less nuclear bodies (NBs) consisting of proteins and RNAs. Microscopic imaging has been widely applied to study the organization and structure of NBs. However, current fixation methods are not optimized for such imaging: When a fixation method is chosen to maximize the quality of the RNA fluorescence in situ hybridization (FISH), it often limits the labeling efficiency of proteins or affects the ultrastructure of NBs. Here, we report that addition of glyoxal (GO) into the classical paraformaldehyde (PFA) fixation step not only improves FISH signals for RNAs in NBs via augmented permeability of the fixed nucleus and enhanced accessibility of probes, but also largely preserves protein fluorescent signals during fixation and immunostaining. We also show that GO/PFA fixation enables the covisualization of different types of nuclear bodies with minimal impact on their ultrastructures under super-resolution microscopy.


Assuntos
Estruturas do Núcleo Celular/ultraestrutura , Fixadores/química , Formaldeído/química , Glioxal/química , Hibridização in Situ Fluorescente/métodos , Polímeros/química , Células HEK293 , Células HeLa , Humanos
8.
Med Sci Monit ; 27: e930591, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33723203

RESUMO

BACKGROUND Cytochrome P450 (CYP) genes are necessary for the production or metabolism of fetal sex hormones during pregnancy. The second-to-fourth digit ratio (2D: 4D) is formed in the early stage of human fetal development and considered an indicator reflecting prenatal sex steroids levels. We explored the association between 2D: 4D and single-nucleotide polymorphisms (SNPs) of CYP. MATERIAL AND METHODS Correlation analysis between 2D: 4D and 8 SNPs, rs2687133 (CPY3A7), rs7173655 (CYP11A1), rs1004467, rs17115149, and rs2486758 (CYP17A1), and rs4646, rs2255192, rs4275794 (CYP19A1), was performed using data from 426 female and 412 male Chinese university students. SNP genotyping was conducted using PCR. Digit lengths were photographed and measured by image processing software. RESULTS rs2486758 (CYP17A1) correlated with left hand 2D: 4D in men (P=0.026), and rs1004467 (CYP17A1) correlated with right hand 2D: 4D in men (P=0.008) and the whole population (P=0.032). In men, allele G rs1004467 decreased right hand 2D: 4D, while allele C of rs2486758 increased left hand 2D: 4D. In women, left hand 2D: 4D was higher in genotypes with allele A of SNP rs4646 (CYP19A1) under the dominant genetic model; female DR-L was higher in genotypes with allele T of rs17115149 (CYP11A1). SNPs rs2687133 (CYP3A7) and rs1004467 (CYP17A1) were significantly correlated with right hand 2D: 4D (P=0.0107). CONCLUSIONS SNPs rs1004467 and rs2486758 of CYP17A1 are significant in the relationship between 2D: 4D and CYP gene polymorphisms under different conditions. SNP interactions between CYP genes probably impact 2D: 4D. The correlation between 2D: 4D and some sex hormone-related diseases may be due to the effect of CYP variants on the 2 phenotypes.


Assuntos
Sistema Enzimático do Citocromo P-450 , Dedos , Feminino , Humanos , Masculino , Adulto Jovem , Alelos , Aromatase/genética , Povo Asiático/genética , Estudos de Casos e Controles , China , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Citocromo P-450 CYP3A/genética , Sistema Enzimático do Citocromo P-450/genética , Dedos/anatomia & histologia , Frequência do Gene/genética , Estudos de Associação Genética/métodos , Genótipo , Polimorfismo de Nucleotídeo Único/genética , Esteroide 17-alfa-Hidroxilase/genética , Estudantes , Universidades
9.
Mol Cell ; 76(6): 981-997.e7, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31757757

RESUMO

Visualizing the location and dynamics of RNAs in live cells is key to understanding their function. Here, we identify two endonuclease-deficient, single-component programmable RNA-guided and RNA-targeting Cas13 RNases (dCas13s) that allow robust real-time imaging and tracking of RNAs in live cells, even when using single 20- to 27-nt-long guide RNAs. Compared to the aptamer-based MS2-MCP strategy, an optimized dCas13 system is user friendly, does not require genetic manipulation, and achieves comparable RNA-labeling efficiency. We demonstrate that the dCas13 system is capable of labeling NEAT1, SatIII, MUC4, and GCN4 RNAs and allows the study of paraspeckle-associated NEAT1 dynamics. Applying orthogonal dCas13 proteins or combining dCas13 and MS2-MCP allows dual-color imaging of RNAs in single cells. Further combination of dCas13 and dCas9 systems allows simultaneous visualization of genomic DNA and RNA transcripts in living cells.


Assuntos
Imagem Molecular/métodos , RNA/fisiologia , Imagem Individual de Molécula/métodos , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Humanos , Mucina-4 , Engenharia de Proteínas/métodos , RNA Guia de Cinetoplastídeos/genética , RNA Longo não Codificante , Ribonucleases/genética , Ribonucleases/metabolismo , Coloração e Rotulagem/métodos
10.
Mol Cell ; 76(5): 767-783.e11, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31540874

RESUMO

Fibrillar centers (FCs) and dense fibrillar components (DFCs) are essential morphologically distinct sub-regions of mammalian cell nucleoli for rDNA transcription and pre-rRNA processing. Here, we report that a human nucleolus consists of several dozen FC/DFC units, each containing 2-3 transcriptionally active rDNAs at the FC/DFC border. Pre-rRNA processing factors, such as fibrillarin (FBL), form 18-24 clusters that further assemble into the DFC surrounding the FC. Mechanistically, the 5' end of nascent 47S pre-rRNA binds co-transcriptionally to the RNA-binding domain of FBL. FBL diffuses to the DFC, where local self-association via its glycine- and arginine-rich (GAR) domain forms phase-separated clusters to immobilize FBL-interacting pre-rRNA, thus promoting directional traffic of nascent pre-rRNA while facilitating pre-rRNA processing and DFC formation. These results unveil FC/DFC ultrastructures in nucleoli and suggest a conceptual framework for considering nascent RNA sorting using multivalent interactions of their binding proteins.


Assuntos
Nucléolo Celular/metabolismo , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Ribossômico/metabolismo , Transporte Ativo do Núcleo Celular , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Nucléolo Celular/genética , Nucléolo Celular/ultraestrutura , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Feminino , Células HEK293 , Células HeLa , Humanos , Conformação de Ácido Nucleico , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Precursores de RNA/genética , Precursores de RNA/ultraestrutura , RNA Ribossômico/genética , RNA Ribossômico/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA