RESUMO
Direction of arrival (DOA) estimation is an important research topic in array signal processing and widely applied in practical engineering. However, when signal sources are highly correlated or coherent, conventional subspace-based DOA estimation algorithms will perform poorly due to the rank deficiency in the received data covariance matrix. Moreover, conventional DOA estimation algorithms are usually developed under Gaussian-distributed background noise, which will deteriorate significantly in impulsive noise environments. In this paper, a novel method is presented to estimate the DOA of coherent signals in impulsive noise environments. A novel correntropy-based generalized covariance (CEGC) operator is defined and proof of boundedness is given to ensure the effectiveness of the proposed method in impulsive noise environments. Furthermore, an improved Toeplitz approximation method combined CEGC operator is proposed to estimate the DOA of coherent sources. Compared to other existing algorithms, the proposed method can avoid array aperture loss and perform more effectively, even in cases of intense impulsive noise and low snapshot numbers. Finally, comprehensive Monte-Carlo simulations are performed to verify the superiority of the proposed method under various impulsive noise conditions.
RESUMO
Motion blur appearing in traffic sign images may lead to poor recognition results, and therefore it is of great significance to study how to deblur the images. In this paper, a novel method for deblurring traffic sign is proposed based on exemplars and several related approaches are also made. First, an exemplar dataset construction method is proposed based on multiple-size partition strategy to lower calculation cost of exemplar matching. Second, a matching criterion based on gradient information and entropy correlation coefficient is also proposed to enhance the matching accuracy. Third, L0.5-norm is introduced as the regularization item to maintain the sparsity of blur kernel. Experiments verify the superiority of the proposed approaches and extensive evaluations against state-of-the-art methods demonstrate the effectiveness of the proposed algorithm.