Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Mol Pharm ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836777

RESUMO

The incorporation of a counterion into an amorphous solid dispersion (ASD) has been proven to be an attractive strategy to improve the drug dissolution rate. In this work, the generality of enhancing the dissolution rates of free acid ASDs by incorporating sodium hydroxide (NaOH) was studied by surface-area-normalized dissolution. A set of diverse drug molecules, two common polymer carriers (copovidone or PVPVA and hydroxypropyl methylcellulose acetate succinate or HPMCAS), and two sample preparation methods (rotary evaporation and spray drying) were investigated. When PVPVA was used as the polymer carrier for the drugs in this study, enhancements of dissolution rates from 7 to 78 times were observed by the incorporation of NaOH into the ASDs at a 1:1 molar ratio with respect to the drug. The drugs having lower amorphous solubilities showed greater enhancement ratios, providing a promising path to improve the drug release performance from their ASDs. Samples generated by rotary evaporation and spray drying demonstrated comparable dissolution rates and enhancements when NaOH was added, establishing a theoretical foundation to bridge the ASD dissolution performance for samples prepared by different solvent-removal processes. In the comparison of polymer carriers, when HPMCAS was applied in the selected system (indomethacin ASD), a dissolution rate enhancement of 2.7 times by the incorporated NaOH was observed, significantly lower than the enhancement of 53 times from the PVPVA-based ASD. This was attributed to the combination of a lower dissolution rate of HPMCAS and the competition for NaOH between IMC and HPMCAS. By studying the generality of enhancing ASD dissolution rates by the incorporation of counterions, this study provides valuable insights into further improving drug release from ASD formulations of poorly water-soluble drugs.

3.
Mol Pharm ; 21(2): 564-580, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38215042

RESUMO

Asthma is a common chronic disease affecting the airways in the lungs. The receptors of allergic cytokines, including interleukin (IL)-4, IL-5, and IL-13, trigger the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, which involves the pathogenesis of asthma. GDC-0214 is a JAK inhibitor that was developed as a potent and selective target for the treatment of asthma, specifically targeting the lungs. While inhaled GDC-0214 is a promising novel treatment option against asthma, improvement is still needed to achieve increased potency of the powder formulation and a reduced number of capsules containing powder to be inhaled. In this study, high-potency amorphous powder formulations containing GDC-0214 nanoaggregates for dry powder inhalation were developed using particle engineering technology, thin film freezing (TFF). A high dose per capsule was successfully achieved by enhancing the solubility of GDC-0214 and powder conditioning. Lactose and/or leucine as excipients exhibited optimum stability and aerosolization of GDC-0214 nanoaggregates, and aerosolization of the dose was independent of air flow through the device between 2 and 6 kPa pressure drops. In the rat PK study, formulation F20, which contains 80% GDC-0214 and 20% lactose, resulted in the highest AUC0-24h in the lungs with the lowest AUC0-24h in the plasma that corresponds to a 4.8-fold higher ratio of the lung-to-plasma exposures compared to micronized crystalline GDC-0214 powder administered by dry powder inhalation. Therefore, GDC-0214 nanoaggregates produced by TFF provided an improved dry powder for inhalation that can lead to enhanced therapeutic efficacy with a lower risk of systemic toxicity.


Assuntos
Asma , Inibidores de Janus Quinases , Ratos , Animais , Pós/química , Congelamento , Lactose , Administração por Inalação , Asma/tratamento farmacológico , Inaladores de Pó Seco , Tamanho da Partícula , Aerossóis e Gotículas Respiratórios
4.
Mol Pharm ; 20(5): 2452-2464, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37010134

RESUMO

In this work, an amorphous solid dispersion (ASD) formulation was systematically developed to simultaneously enhance bioavailability and mitigate the mechanical instability risk of the selected crystalline form of a development drug candidate, GDC-0334. The amorphous solubility advantage calculation was applied to understand the solubility enhancement potential by an amorphous formulation for GDC-0334, which showed 2.7 times theoretical amorphous solubility advantage. This agreed reasonably well with the experimental solubility ratio between amorphous GDC-0334 and its crystalline counterpart (∼2 times) in buffers of a wide pH range. Guided by the amorphous solubility advantage, ASD screening was then carried out, focusing on supersaturation maintenance and dissolution performance. It was found that although the type of polymer carrier did not impact ASD performance, the addition of 5% (w/w) sodium dodecyl sulfate (SDS) significantly improved the GDC-0334 ASD dissolution rate. After ASD composition screening, stability studies were conducted on selected ASD powders and their hypothetical tablet formulations. Excellent stability of the selected ASD prototypes with or without tablet excipients was observed. Subsequently, ASD tablets were prepared, followed by in vitro and in vivo evaluations. Similar to the effect of facilitating the dissolution of ASD powders, the added SDS improved the disintegration and dissolution of ASD tablets. Finally, a dog pharmacokinetic study confirmed 1.8 to 2.5-fold enhancement of exposure by the developed ASD tablet over the GDC-0334 crystalline form, consistent with the amorphous solubility advantage of GDC-0334. A workflow of developing an ASD formulation for actual pharmaceutical application was proposed according to the practice of this work, which could provide potential guidance for ASD formulation development in general for other new chemical entities.


Assuntos
Excipientes , Polímeros , Animais , Cães , Disponibilidade Biológica , Solubilidade , Dodecilsulfato de Sódio/química , Polímeros/química , Comprimidos/química , Excipientes/química , Liberação Controlada de Fármacos
5.
Org Lett ; 24(31): 5635-5640, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35731042

RESUMO

Differentiation of heterocyclic isomers by solution 1H, 13C, and 15N NMR spectroscopy is often challenging due to similarities in their spectroscopic signatures. Here, 13C{14N} solid-state NMR spectroscopy experiments are shown to operate as an "attached nitrogen test", where heterocyclic isomers are easy to distinguish based on one-dimensional nitrogen-filtered 13C solid-state NMR. We anticipate that these NMR experiments will facilitate the assignment of heterocyclic isomers during synthesis and natural product discovery.


Assuntos
Nitrogênio , Isomerismo , Espectroscopia de Ressonância Magnética/métodos , Nitrogênio/química
6.
Solid State Nucl Magn Reson ; 119: 101785, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35405629

RESUMO

In the past 15 years, magic angle spinning (MAS) dynamic nuclear polarization (DNP) has emerged as a method to increase the sensitivity of high-resolution solid-state NMR spectroscopy experiments. Recently, γ-irradiation has been used to generate significant concentrations of homogeneously distributed free radicals in a variety of solids, including quartz, glucose, and cellulose. Both γ-irradiated quartz and glucose previously showed significant MAS DNP enhancements. Here, γ-irradiation is applied to twelve small organic molecules to test the applicability of γ-irradiation as a general method of creating stable free radicals for MAS DNP experiments on organic solids and pharmaceuticals. Radical concentrations in the range of 0.25 â€‹mM-10 â€‹mM were observed in irradiated glucose, histidine, malic acid, and malonic acid, and significant 1H DNP enhancements of 32, 130, 19, and 11 were obtained, respectively, as measured by 1H→13C CPMAS experiments. However, concentrations of free radicals below 0.05 â€‹mM were generally observed in organic molecules containing aromatic rings, preventing sizeable DNP enhancements. DNP sensitivity gains for several of the irradiated compounds exceed that which can be obtained with the relayed DNP approach that uses exogeneous polarizing agent solutions and impregnation procedures. In several cases, significant 1H DNP enhancements were realized at room temperature. This study demonstrates that in many cases γ-irradiation is a viable alternative to addition of stable exogenous radicals for DNP experiments on organic solids.


Assuntos
Histidina , Quartzo , Radicais Livres , Glucose , Histidina/química , Espectroscopia de Ressonância Magnética/métodos
7.
AAPS PharmSciTech ; 23(1): 28, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34931259

RESUMO

Spray-drying dispersion (SDD) is a well-established manufacturing technique used to prepare amorphous solid dispersions (ASDs), allowing for poorly soluble drugs to have improved bioavailability. However, the process of spray-drying with multiple factors and numerous variables can lead to a lengthy development timeline with intense resource requirements, which becomes the main obstacle limiting spray-drying development at the preclinical stage. The purpose of this work was to identify optimized preset parameters for spray-drying to support the early development of ASDs suitable for most circumstances rather than individual optimization. First, a mini-DoE (Design of Experiment) study was designed to evaluate the critical interplay of two key variables for spray-drying using a BUCHI B-290 mini spray dryer: solid load and atomizing spray gas flow. The critical quality attributes (CQAs) of the ASDs, including yield, particle size, morphology, and in vitro release profile, were taken into account to identify the impact of the key variables. The mini-DoE results indicated that a 5% solid load (w/v %) and 35 mm height atomizing spray gas flow were the most optimized parameters. These predefined values were further verified using different formulation compositions, including various polymers (Eudragit L100-55, HPMCAS-MF, PVAP, and PVP-VA64) and drugs (G-F, GEN-A, Indomethacin, and Griseofulvin), a range of drug loading (10 to 40%), and scale (200 mg to 200 g). Using these predefined parameters, all ASD formulations resulted in good yields as well as consistent particle size distribution. This was despite the differences in the formulations, making this a valuable and rapid approach ideal for early development. This strategy of leveraging the preset spray-drying parameters was able to successfully translate into a reproducible and efficient spray-drying platform while also saving material and reducing developmental timelines in early-stage formulation development.

8.
Mol Pharm ; 18(9): 3429-3438, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34338529

RESUMO

Solubility enhancement has become a common requirement for formulation development to deliver poorly water soluble drugs. Amorphous solid dispersions (ASDs) and salt formation have been two successful strategies, yet there are opportunities for further development. For ASDs, drug-polymer phase separation may occur at high drug loadings during dissolution, limiting the increase of drug loadings in ASD formulations. For salt formation, a salt form with high crystallinity and sufficient solid-state stability is required for solid dosage form development. This work studied the effect of counterions on the dissolution performance of ASDs. Surface area normalized dissolution or intrinsic dissolution methodology was employed to eliminate the effect of particle size and provide a quantitative comparison of the counterion effect on the intrinsic dissolution rate. Using indomethacin (IMC)-poly(vinylpyrrolidone-co-vinyl acetate) ASD as a model system, the effect of different bases incorporated into the ASD during preparation, the molar ratios between the base and IMC, and the drug loadings in the ASD were systematically studied. Strong bases capable of ionizing IMC significantly enhanced drug dissolution, while a weak base did not. A physical mixture of a strong base and the ASD also enhanced the dissolution rate, but the effect was less pronounced. At different base to IMC molar ratios, dissolution enhancement increased with the base to IMC ratio. At different drug loadings, without a base, the IMC dissolution rate decreased with the increase of drug loading. After incorporating a strong base, it increased with the increase of drug loading. The observations from this study were thought to be related to both the ionization of IMC in ASDs and the increase of microenvironment pH by the incorporated bases. With the significant enhancement of the drug dissolution rate, our work provides a promising approach of overcoming the dissolution limitation of ASD formulations at high drug loadings.


Assuntos
Portadores de Fármacos/química , Indometacina/farmacocinética , Cristalização , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Interações Hidrofóbicas e Hidrofílicas , Indometacina/administração & dosagem , Íons/química , Tamanho da Partícula , Polímeros/química , Solubilidade
9.
J Pharm Sci ; 110(8): 3037-3046, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34004219

RESUMO

Micronization by air jet milling is often used to produce drug substance particles of acceptable respirable size for use in dry powder inhaler formulations. The energy from this process often induces surface disordered sites on the micronized particles with potential consequences for the long-term stability of the drug substance. In this study, two lots of the same drug substance were qualitatively determined to have different extents of disordered surface using dynamic vapor sorption and scanning electron microscopy. These differences led to observable divergences in particle size and morphology between lots of drug substances on long-term and accelerated stability. The studies investigate the contribution of temperature and humidity, morphology prior to milling, and stability behavior post-micronization. The results highlight the importance of controlling the crystallization solvents upstream of micronization and their contribution to a material's susceptibility to milling-induced disorder on long-term physical stability. Furthermore, this work proposes an accelerated technique useful in predicting stability behavior of micronized drug substances in days rather than months, especially in cases where small differences cannot be detected by standard solid-state techniques.


Assuntos
Inaladores de Pó Seco , Administração por Inalação , Cristalização , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Pós
10.
ACS Med Chem Lett ; 11(8): 1588-1597, 2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32832028

RESUMO

Bruton's tyrosine kinase (Btk) is thought to play a pathogenic role in chronic immune diseases such as rheumatoid arthritis and lupus. While covalent, irreversible Btk inhibitors are approved for treatment of hematologic malignancies, they are not approved for autoimmune indications. In efforts to develop additional series of reversible Btk inhibitors for chronic immune diseases, we sought to differentiate from our clinical stage inhibitor fenebrutinib using cyclopropyl amide isosteres of the 2-aminopyridyl group to occupy the flat, lipophilic H2 pocket. While drug-like properties were retained-and in some cases improved-a safety liability in the form of hERG inhibition was observed. When a fluorocyclopropyl amide was incorporated, Btk and off-target activity was found to be stereodependent and a lead compound was identified in the form of the (R,R)- stereoisomer.

11.
Chemistry ; 26(35): 7881-7888, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32315472

RESUMO

Fast magic-angle spinning (MAS), frequency selective (FS) heteronuclear multiple quantum coherence (HMQC) experiments which function in an analogous manner to solution SOFAST HMQC NMR experiments, are demonstrated. Fast MAS enables efficient FS excitation of 1 H solid-state NMR signals. Selective excitation and observation preserves 1 H magnetization, leading to a significant shortening of the optimal inter-scan delay. Dipolar and scalar 1 H{14 N} FS HMQC solid-state NMR experiments routinely provide 4- to 9-fold reductions in experiment times as compared to conventional 1 H{14 N} HMQC solid-state NMR experiments. 1 H{14 N} FS resonance-echo saturation-pulse double-resonance (RESPDOR) allowed dipolar dephasing curves to be obtained in minutes, enabling the rapid determination of NH dipolar coupling constants and internuclear distances. 1 H{14 N} FS RESPDOR was used to assign multicomponent active pharmaceutical ingredients (APIs) as salts or cocrystals. FS HMQC also provided enhanced sensitivity for 1 H{17 O} and 1 H{35 Cl} HMQC experiments on 17 O-labeled Fmoc-alanine and histidine hydrochloride monohydrate, respectively. FS HMQC and FS RESPDOR experiments will provide access to valuable structural constraints from materials that are challenging to study due to unfavorable relaxation times or dilution of the nuclei of interest.


Assuntos
Histidina/química , Núcleo Celular/química , Espectroscopia de Ressonância Magnética , Prótons
12.
Mol Pharm ; 16(7): 3121-3132, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31095913

RESUMO

Active pharmaceutical ingredients (APIs) can be prepared in many different solid forms and phases that affect their physicochemical properties and suitability for oral dosage forms. The development and commercialization of dosage forms require analytical techniques that can determine and quantify the API phase in the final drug product. 13C solid-state NMR (SSNMR) spectroscopy is widely employed to characterize pure and formulated solid APIs; however, 13C SSNMR experiments on dosage forms with low API loading are often challenging due to low sensitivity and interference from excipients. Here, fast magic angle spinning 1H SSNMR experiments are shown to be applicable for the rapid characterization of low drug load formulations. Diagnostic 1H SSNMR spectra of APIs within tablets are obtained by using combinations of frequency-selective saturation and excitation pulses, two-dimensional experiments, and 1H spin diffusion periods. Selective saturation pulses efficiently suppress the broad 1H SSNMR signals from the most commonly encountered excipients such as lactose and cellulose, allowing observation of high-frequency API 1H NMR signals. 1H SSNMR provides a 1-3 orders of magnitude reduction in experiment time compared to standard 13C SSNMR experiments, enabling diagnostic SSNMR spectra of dilute APIs within tablets to be obtained within minutes. The 1H SSNMR spectra can be used for quantification, provided calibrations are performed on a standard sample with known API loading.


Assuntos
Isótopos de Carbono/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Composição de Medicamentos , Hidrogênio/química , Celulose/química , Excipientes/química , Estudos de Viabilidade , Lactose/química , Mexiletina/química , Ácidos Esteáricos/química , Comprimidos/química , Teofilina/química , Difração de Raios X
13.
J Pharm Sci ; 108(2): 870-879, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30244013

RESUMO

Usage of the amorphous phase of compounds has become the method of choice to overcome oral bioavailability problems related to poor solubility. Due to the unstable nature of glasses, it is clear that the method of preparation of the amorphous glass will have an impact on physical/chemical stability and in turn in vivo performance. The method of preparation can also have a profound impact on the mechanical properties of the amorphous phase. We have explored the impact of preparation method on the mechanical properties of an amorphous solid dispersion using a development compound, GDC-0810. Three methods were used to generate amorphous solid dispersions (ASDs) of 50% GDC-0810 with hydroxypropyl methylcellulose acetate succinate: (1) spray drying, (2) coprecipitation using overhead mixing, and (3) coprecipitation using resonant acoustic mixing. All 3 methods were found to generate ASDs with good phase mixing and similar glass transition temperatures. Coprecipitated ASD powders (overhead mixing and resonant acoustic mixing) demonstrated superior tabletability and flow properties when compared to the spray drying powder. Careful choice of manufacturing process can be used to tune material properties of ASDs to make them more amenable for downstream operations like tableting. Acoustic mixing has been demonstrated as a scalable new method to make ASDs through coprecipitation.


Assuntos
Cinamatos/química , Composição de Medicamentos/métodos , Excipientes/química , Indazóis/química , Metilcelulose/análogos & derivados , Cristalização , Composição de Medicamentos/instrumentação , Desenho de Equipamento , Metilcelulose/química , Transição de Fase , Solubilidade , Temperatura de Transição
14.
Mol Pharm ; 15(11): 5072-5080, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30216726

RESUMO

GENE-A, a Nav1.7 inhibitor compound with analgesic activity, was developed as a crystalline anhydrate, for which two polymorphic forms, I and II, were discovered. The two forms were found to possess very similar free energies as determined experimentally with Form II being thermodynamically stable above 25 °C based on solubility measurements. A detailed solid-state characterization was conducted to determine the relative stability of these solid forms, and both thermodynamic and kinetic pathways (slurry bridging and crystallization) were evaluated. Form II was obtained as the final form in competitive slurries at RT. The outcome of crystallization experiments in terms of the solid form obtained was complicated and yielded variable results depending on the form of the starting material and that of the seeds. Form II was reproducibly obtained as the end product in unseeded experiments and in those with Form II as seeds and starting material, while Form I was obtained in all other seeded experiments. On the basis of the experimental data, a controlled crystallization strategy was developed, wherein Form II was used both as starting material and seeds to reproducibly obtain the desired form upon scale-up.


Assuntos
Analgésicos não Narcóticos/química , Composição de Medicamentos/métodos , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Varredura Diferencial de Calorimetria , Química Farmacêutica , Cristalização/métodos , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Transição de Fase , Solubilidade , Temperatura de Transição
15.
Mol Pharm ; 15(4): 1607-1617, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29522347

RESUMO

In this study, a multipronged approach of in vitro experiments, in silico simulations, and in vivo studies was developed to evaluate the dissolution, supersaturation, precipitation, and absorption of three formulations of Compound-A, a BCS class 2 weak base with pH-dependent solubility. In in vitro 2-stage dissolution experiments, the solutions were highly supersaturated with no precipitation at the low dose but increasing precipitation at higher doses. No difference in precipitation was observed between the capsules and tablets. The in vitro precipitate was found to be noncrystalline with higher solubility than the crystalline API, and was readily soluble when the drug concentration was lowered by dilution. A gastric transit and biphasic dissolution (GTBD) model was developed to better mimic gastric transfer and intestinal absorption. Precipitation was also observed in GTBD, but the precipitate redissolved and partitioned into the organic phase. In vivo data from the phase 1 clinical trial showed linear and dose proportional PK for the formulations with no evidence of in vivo precipitation. While the in vitro precipitation observed in the 2-stage dissolution appeared to overestimate in vivo precipitation, the GTBD model provided absorption profiles consistent with in vivo data. In silico simulation of plasma concentrations by GastroPlus using biorelevant in vitro dissolution data from the tablets and capsules and assuming negligible precipitation was in line with the observed in vivo profiles of the two formulations. The totality of data generated with Compound-A indicated that the bioavailability differences among the three formulations were better explained by the differences in gastric dissolution than intestinal precipitation. The lack of intestinal precipitation was consistent with several other BCS class 2 basic compounds in the literature for which highly supersaturated concentrations and rapid absorption were also observed.


Assuntos
Absorção Intestinal/fisiologia , Preparações Farmacêuticas/metabolismo , Comprimidos/metabolismo , Disponibilidade Biológica , Biofarmácia/métodos , Química Farmacêutica/métodos , Simulação por Computador , Humanos , Intestinos/química , Solubilidade , Estômago/fisiologia
16.
Pharm Res ; 35(3): 65, 2018 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-29464409

RESUMO

PURPOSE: To investigate the nature of drug-excipient interactions between indomethacin (IMC) and methacrylate copolymer Eudragit® E (EE) in the amorphous state, and evaluate the effects on formulation and stability of these amorphous systems. METHODS: Amorphous solid dispersions containing IMC and EE were spray dried with drug loadings from 20% to 90%. PXRD was used to confirm the amorphous nature of the dispersions, and DSC was used to measure glass transition temperatures (Tg). 13C and 15N solid-state NMR was utilized to investigate changes in local structure and protonation state, while 1H T1 and T1ρ relaxation measurements were used to probe miscibility and phase behavior of the dispersions. RESULTS: Tg values for IMC-EE solid dispersions showed significant positive deviations from predicted values in the drug loading range of 40-90%, indicating a relatively strong drug-excipient interaction. 15N solid-state NMR exhibited a change in protonation state of the EE basic amine, with two distinct populations for the EE amine at -360.7 ppm (unprotonated) and -344.4 ppm (protonated). Additionally, 1H relaxation measurements showed phase separation at high drug load, indicating an amorphous ionic complex and free IMC-rich phase. PXRD data showed all ASDs up to 90% drug load remained physically stable after 2 years. CONCLUSIONS: 15N solid-state NMR experiments show a change in protonation state of EE, indicating that an ionic complex indeed forms between IMC and EE in amorphous solid dispersions. Phase behavior was determined to exhibit nanoscale phase separation at high drug load between the amorphous ionic complex and excess free IMC.


Assuntos
Anti-Inflamatórios não Esteroides/química , Composição de Medicamentos/métodos , Excipientes/química , Indometacina/química , Ácidos Polimetacrílicos/química , Química Farmacêutica , Estabilidade de Medicamentos , Espectroscopia de Ressonância Magnética/métodos , Conformação Molecular , Transição de Fase
17.
J Med Chem ; 61(6): 2227-2245, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29457982

RESUMO

Bruton's tyrosine kinase (Btk) is a nonreceptor cytoplasmic tyrosine kinase involved in B-cell and myeloid cell activation, downstream of B-cell and Fcγ receptors, respectively. Preclinical studies have indicated that inhibition of Btk activity might offer a potential therapy in autoimmune diseases such as rheumatoid arthritis and systemic lupus erythematosus. Here we disclose the discovery and preclinical characterization of a potent, selective, and noncovalent Btk inhibitor currently in clinical development. GDC-0853 (29) suppresses B cell- and myeloid cell-mediated components of disease and demonstrates dose-dependent activity in an in vivo rat model of inflammatory arthritis. It demonstrates highly favorable safety, pharmacokinetic (PK), and pharmacodynamic (PD) profiles in preclinical and Phase 2 studies ongoing in patients with rheumatoid arthritis, lupus, and chronic spontaneous urticaria. On the basis of its potency, selectivity, long target residence time, and noncovalent mode of inhibition, 29 has the potential to be a best-in-class Btk inhibitor for a wide range of immunological indications.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Anti-Inflamatórios/farmacologia , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridonas/farmacologia , Tirosina Quinase da Agamaglobulinemia/efeitos dos fármacos , Tirosina Quinase da Agamaglobulinemia/genética , Animais , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/toxicidade , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Cães , Descoberta de Drogas , Humanos , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Células Madin Darby de Rim Canino , Modelos Moleculares , Estrutura Molecular , Piperazinas/farmacocinética , Piperazinas/toxicidade , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/toxicidade , Piridonas/farmacocinética , Piridonas/toxicidade , Ratos , Ratos Endogâmicos Lew , Ratos Sprague-Dawley
18.
Pharm Res ; 35(3): 51, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29417314

RESUMO

PURPOSE: Molecular understanding of phase stability and transition of the amorphous state helps in formulation and manufacturing of poorly-soluble drugs. Crystallization of a model compound, 2-phenylamino nicotinic acid (2PNA), from the amorphous state was studied using solid-state analytical methods. Our previous report suggests that 2PNA molecules mainly develop intermolecular -COOH∙∙∙pyridine N (acid-pyridine) interactions in the amorphous state. In the current study, the molecular speciation is explored with regard to the phase transition from the amorphous to the crystalline state. METHODS: Using spectroscopic techniques, the molecular interactions and structural evolvement during the recrystallization from the glassy state were investigated. RESULTS: The results unveiled that the structurally heterogeneous amorphous state contains acid-pyridine aggregates - either as hydrogen-bonded neutral molecules or as zwitterions - as well as a population of carboxylic acid dimers. Phase transition from the amorphous state results in crystal structures composed of carboxylic acid dimer (acid-acid) synthon or acid-pyridine chains depending on the crystallization conditions employed. CONCLUSIONS: The study underlines the structural evolvement, as well as its impact on the metastability, of amorphous samples from local, supramolecular assemblies to long-range intermolecular ordering through crystallization.


Assuntos
Compostos de Anilina/química , Niacina/química , Transição de Fase , Química Farmacêutica , Cristalização , Dimerização , Estrutura Molecular , Solubilidade , Análise Espectral
19.
Mol Pharm ; 15(3): 1226-1237, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29412681

RESUMO

As the pipeline for poorly soluble compounds continues to grow, drug degradation during melt extrusion must be addressed. We present a novel method for stabilizing a thermally labile drug substance while preserving its physical stability and even improving its dissolution performance. In a previous study, we found that incorporating meglumine during extrusion of meloxicam results in chemical stabilization that cannot be achieved using process optimization alone. The purpose of this study is to understand the mechanism behind this stabilization and its impact on the performance of a meloxicam-Kollidon VA64 amorphous solid dispersion. The meloxicam concentration was maintained at 10% (w/w) for blends with and without meglumine. The optimal meglumine blend contained an equimolar amount of meloxicam to meglumine with the remainder consisting of Kollidon VA64. Both formulations were processed with optimized extrusion conditions and analyzed by HPLC for purity. Meglumine at a 1:1 molar ratio with meloxicam results in 100% purity of meloxicam after melt extrusion. Solid-state NMR revealed a proton transfer between the meloxicam and meglumine indicating an in situ salt formation. During non-sink dissolution, the meglumine ASD enables meloxicam to maintain supersaturatation (≅50 times more than meloxicam free acid) for >7.25 h. The ASD without meglumine began precipitating 2.25 h following the pH shift. The ASDs were placed at 40 °C/75% RH for 6 months, and their stability was assessed. No significant chemical degradation, recrystallization, or significant moisture uptake was observed after six months' storage at 40 °C/75% RH.


Assuntos
Portadores de Fármacos/química , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Meloxicam/química , Varredura Diferencial de Calorimetria , Química Farmacêutica , Estabilidade de Medicamentos , Armazenamento de Medicamentos/métodos , Excipientes/química , Congelamento/efeitos adversos , Temperatura Alta/efeitos adversos , Meglumina/química , Ácidos Polimetacrílicos/química , Pirrolidinas/química , Compostos de Vinila/química , Difração de Raios X
20.
Phys Chem Chem Phys ; 19(41): 28153-28162, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-29022618

RESUMO

We demonstrate that natural isotopic abundance 2D heteronuclear correlation (HETCOR) solid-state NMR spectra can be used to significantly reduce or eliminate the broadening of 1H and 13C solid-state NMR spectra of organic solids due to anisotropic bulk magnetic susceptibility (ABMS). ABMS often manifests in solids with aromatic groups, such as active pharmaceutical ingredients (APIs), and inhomogeneously broadens the NMR peaks of all nuclei in the sample. Inhomogeneous peaks with full widths at half maximum (FWHM) of ∼1 ppm typically result from ABMS broadening and the low spectral resolution impedes the analysis of solid-state NMR spectra. ABMS broadening of solid-state NMR spectra has previously been eliminated using 2D multiple-quantum correlation experiments, or by performing NMR experiments on diluted materials or single crystals. However, these experiments are often infeasible due to their poor sensitivity and/or provide limited gains in resolution. 2D 1H-13C HETCOR experiments have previously been applied to reduce susceptibility broadening in paramagnetic solids and we show that this strategy can significantly reduce ABMS broadening in diamagnetic organic solids. Comparisons of 1D solid-state NMR spectra and 1H and 13C solid-state NMR spectra obtained from 2D 1H-13C HETCOR NMR spectra show that the HETCOR spectrum directly increases resolution by a factor of 1.5 to 8. The direct gain in resolution is determined by the ratio of the inhomogeneous 13C/1H linewidth to the homogeneous 1H linewidth, with the former depending on the magnitude of the ABMS broadening and the strength of the applied field and the latter on the efficiency of homonuclear decoupling. The direct gains in resolution obtained using the 2D HETCOR experiments are better than that obtained by dilution. For solids with long proton longitudinal relaxation times, dynamic nuclear polarization (DNP) was applied to enhance sensitivity and enable the acquisition of 2D 1H-13C HETCOR NMR spectra. 2D 1H-13C HETCOR experiments were applied to resolve and partially assign the NMR signals of the form I and form II polymorphs of aspirin in a sample containing both forms. These findings have important implications for ultra-high field NMR experiments, optimization of decoupling schemes and assessment of the fundamental limits on the resolution of solid-state NMR spectra.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA