RESUMO
SrRuO_{3}, a ferromagnet with an approximately 160 K Curie temperature, exhibits a T^{2}-dependent dc resistivity below ≈30 K. Nevertheless, previous optical studies in the infrared and terahertz range show non-Drude dynamics at low temperatures, which seem to contradict Fermi-liquid predictions. In this work, we measure the low-frequency THz range response of thin films with residual resistivity ratios, ρ_{300K}/ρ_{4K}≈74. At temperatures below 30 K, we find both a sharp zero frequency mode which has a width narrower than k_{B}T/â as well as a broader zero frequency Lorentzian that has at least an order of magnitude larger scattering. Both features have temperature dependences consistent with a Fermi liquid with the wider feature explicitly showing a T^{2} scaling. Above 30 K, there is a crossover to a regime described by a single Drude peak that we believe arises from strong interband electron-electron scattering. Such two channel Drude transport sheds light on reports of the violation of Matthiessen's rule and extreme sensitivity to disorder in metallic ruthenates.
RESUMO
The presence of optical polarization anisotropies, such as Faraday or Kerr effects, linear birefringence, and magnetoelectric birefringence are evidence for broken symmetry states of matter. The recent discovery of a Kerr effect using near-IR light in the pseudogap phase of the cuprates can be regarded as a strong evidence for a spontaneous symmetry breaking and the existence of an anomalous long-range ordered state. In this work we present a high precision study of the polarimetry properties of the cuprates in the THz regime. While no Faraday effect was found in this frequency range to the limits of our experimental uncertainty (1.3 milli-radian or 0.07°), a small but significant polarization rotation was detected that derives from an anomalous linear dichroism. In YBa2Cu3Oy the effect has a temperature onset that mirrors the pseudogap temperature T* and is enhanced in magnitude in underdoped samples. In x=1/8 La2-xBaxCuO4, the effect onsets above room temperature, but shows a dramatic enhancement near a temperature scale known to be associated with spin- and charge-ordered states. These features are consistent with a loss of both C4 rotation and mirror symmetry in the electronic structure of the CuO2 planes in the pseudogap state.
RESUMO
The phase diagram of the superconducting high-T(c) cuprates is governed by two energy scales: T*, the temperature below which a gap is opened in the excitation spectrum, and T(c), the superconducting transition temperature. The way these two energy scales are reflected in the low-temperature energy gap is being intensively debated. Using Zn substitution and carefully controlled annealing we prepared a set of samples having the same T* but different T(c)'s, and measured their gap using angle-resolved photoemission spectroscopy (ARPES). We show that T(c) is not related to the gap shape or size, but it controls the size of the coherence peak at the gap edge.