RESUMO
Identification of human cancer-reactive CD8+ T cells is crucial for the stratification of patients for immunotherapy and determination of immune-therapeutic effects. To date, these T cells have been identified mainly based on cell surface expression of programmed cell death protein 1 (PD-1) or co-expression of CD103 and CD39. A small subset of CD103- CD39+ CD8+ T cells is also present in tumors, but little is known about these T cells. Here, we report that CD103- CD39+ CD8+ T cells from mismatch repair-deficient endometrial tumors are activated and characterized predominantly by expression of TNFRSF9. In vitro, transforming growth factor-beta (TGF-ß) drives the disappearance of this subset, likely through the conversion of CD103- CD39+ cells to a CD103+ phenotype. On the transcriptomic level, T cell activation and induction of CD39 was associated with a number of tissue residence and TGF-ß responsive transcription factors. Altogether, our data suggest CD39+ CD103- CD8+ tumor-infiltrating T cells are recently activated and likely rapidly differentiate towards tissue residence upon exposure to TGF-ß in the tumor micro-environment, explaining their relative paucity in human tumors.
RESUMO
Activation of STimulator of INterferon Genes (STING) is important for induction of anti-tumor immunity. A dysfunctional STING pathway is observed in multiple cancer types and associates with poor prognosis and inferior response to immunotherapy. However, the association between STING and prognosis in virally induced cancers such as HPV-positive cervical cancer remains unknown. Here, we investigated the prognostic value of STING protein levels in cervical cancer using tumor tissue microarrays of two patient groups, primarily treated with surgery (n = 251) or radio(chemo)therapy (n = 255). We also studied CD103, an integrin that marks tumor-reactive cytotoxic T cells that reside in tumor epithelium and that is reported to associate with improved prognosis. Notably, we found that a high level of STING protein was an independent prognostic factor for improved survival in both the surgery and radio(chemo)therapy group. High infiltration of CD103+ T cells was associated with improved survival in the radio(chemo)therapy group. The combination of STING levels and CD103+ T cell infiltration is strongly associated with improved prognosis. We conclude that combining the prognostic values of STING and CD103 may improve the risk stratification of cervical cancer patients, independent from established clinical prognostic parameters.
Assuntos
Linfócitos T CD8-Positivos , Proteínas de Membrana/metabolismo , Neoplasias do Colo do Útero , Antígenos CD , Feminino , Humanos , Cadeias alfa de Integrinas , Integrinas , Prognóstico , Neoplasias do Colo do Útero/terapiaRESUMO
DNA-sensing receptor Cyclic GMP-AMP Synthase (cGAS) and its downstream signaling effector STimulator of INterferon Genes (STING) have gained significant interest in the field of tumor immunology, as a dysfunctional cGAS-STING pathway is associated with poor prognosis and worse response to immunotherapy. However, studies so far have not taken into account the polymorphic nature of the STING-encoding STING1 gene. We hypothesized that the presence of allelic variance in STING1 would cause variation between individuals as to their susceptibility to cancer development, cancer progression, and potential response to (immuno)therapy. To start to address this, we defined the genetic landscapes of STING1 in cervical scrapings and investigated their corresponding clinical characteristics across a unique cohort of cervical cancer patients and compared them with independent control cohorts. Although we did not observe an enrichment of particular STING1 allelic variants in cervical cancer patients, we did find that the occurrence of homozygous variants HAQ/HAQ and R232H/R232H of STING1 were associated with both younger age of diagnosis and higher recurrence rate. These findings were accompanied by worse survival, despite comparable mRNA and protein levels of STING and numbers of infiltrated CD8+ T cells. Our findings suggest that patients with HAQ/HAQ and R232H/R232H genotypes may have a dysfunctional cGAS-STING pathway that fails to promote efficient anticancer immunity. Interestingly, the occurrence of these genotypes coincided with homozygous presence of the V48V variant, which was found to be individually associated with worse outcome. Therefore, we propose V48V to be further evaluated as a novel prognostic marker for cervical cancer.
Assuntos
Variação Genética/genética , Proteínas de Membrana/genética , Neoplasias do Colo do Útero/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Linfócitos T CD8-Positivos/imunologia , Estudos de Coortes , Feminino , Estudos de Associação Genética , Variação Genética/imunologia , Genótipo , Humanos , Proteínas de Membrana/imunologia , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/imunologia , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Neoplasias do Colo do Útero/imunologia , Adulto JovemRESUMO
Epithelial Ovarian cancer (EOC) is the most lethal gynecological malignancy and has limited curative therapeutic options. Immunotherapy for EOC is promising, but clinical efficacy remains restricted to a small percentage of patients. Several lines of evidence suggest that the low response rate might be improved by combining immunotherapy with carboplatin and paclitaxel, the standard-of-care chemotherapy for EOC. Here, we assessed the immune contexture of EOC tumors, draining lymph nodes, and peripheral blood mononuclear cells during carboplatin/paclitaxel chemotherapy. We observed that the immune contexture of EOC patients is defined by the tissue of origin, independent of exposure to chemotherapy. Summarized, draining lymph nodes were characterized by a quiescent microenvironment composed of mostly non-proliferating naïve CD4 + T cells. Circulating T cells shared phenotypic features of both lymph nodes and tumor-infiltrating immune cells. Immunologically 'hot' ovarian tumors were characterized by ICOS, GITR, and PD-1 expression on CD4 + and CD8 + cells, independent of chemotherapy. The presence of PD-1 + cells in tumors prior to, but not after, chemotherapy was associated with disease-specific survival (DSS). Accordingly, we observed high MHC-I expression in tumors prior to chemotherapy, but minimal MHC-I expression in tumors after neoadjuvant chemotherapy, even though there were no differences in the number of tumor-infiltrating lymphocytes (TIL) in both groups. We therefore speculate that the TIL influx into the chemotherapy tumor microenvironment may be a consequence of the general inflammatory nature of chemotherapy-experienced tumors. Strategies to upregulate MHC-I during or after neoadjuvant chemotherapy may thus improve treatment outcome in these patients.
Assuntos
Terapia Neoadjuvante , Neoplasias Ovarianas , Carcinoma Epitelial do Ovário/tratamento farmacológico , Feminino , Humanos , Linfócitos do Interstício Tumoral , Neoplasias Ovarianas/tratamento farmacológico , Estudos Retrospectivos , Microambiente TumoralRESUMO
The chemokine CXCL13 mediates recruitment of B cells to tumors and is essential for the formation of tertiary lymphoid structures (TLSs). TLSs are thought to support antitumor immunity and are associated with improved prognosis. However, it remains unknown whether TLSs are formed in response to the general inflammatory character of the tumor microenvironment, or rather, are induced by (neo)antigen-specific adaptive immunity. We here report on the finding that the TGFß-dependent CD103+CD8+ tumor-infiltrating T-cell (TIL) subpopulation expressed and produced CXCL13. Accordingly, CD8+ T cells from peripheral blood activated in the presence of TGFß upregulated CD103 and secreted CXCL13. Conversely, inhibition of TGFß receptor signaling abrogated CXCL13 production. CXCL13+CD103+CD8+ TILs correlated with B-cell recruitment, TLSs, and neoantigen burden in six cohorts of human tumors. Altogether, our findings indicated that TGFß plays a noncanonical role in coordinating immune responses against human tumors and suggest a potential role for CXCL13+CD103+CD8+ TILs in mediating B-cell recruitment and TLS formation in human tumors.