Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Eur J Cell Biol ; 102(2): 151333, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37327741

RESUMO

Nuclear Dbf2-related (NDR) kinases are a subgroup of evolutionarily conserved AGC protein kinases that regulate various aspects of cell growth and morphogenesis. There are 4 NDR protein kinases in mammals, LATS1, LATS2 and STTK8/NDR1, STK38L/NDR2 protein kinases. LATS1 and 2 are core components of the well-studied Hippo pathway, which play a critical role in the regulation of cell proliferation, differentiation, and cell migration via YAP/TAZ transcription factor. The Hippo pathways play an important role in nervous tissue development and homeostasis, especially with regard to the central nervous system (CNS) and the ocular system. The ocular system is a very complex system generated by the interaction in a very tightly coordinated manner of numerous and diverse developing tissues, such as, but not limited to choroidal and retinal blood vessels, the retinal pigmented epithelium and the retina, a highly polarized neuronal tissue. The retina development and maintenance require precise and coordinated regulation of cell proliferation, cell death, migration, morphogenesis, synaptic connectivity, and balanced homeostasis. This review highlights the emerging roles of NDR1 and NDR2 kinases in the regulation of retinal/neuronal function and homeostasis via a noncanonical branch of the Hippo pathway. We highlight a potential role of NDR1 and NDR2 kinases in regulating neuronal inflammation and as potential therapeutic targets for the treatment of neuronal diseases.


Assuntos
Neurobiologia , Proteínas Quinases , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Proliferação de Células , Diferenciação Celular , Sistema Nervoso Central/metabolismo , Mamíferos/metabolismo
2.
Biol Reprod ; 107(1): 157-167, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35554494

RESUMO

Although hundreds of knockout mice show infertility as a major phenotype, the causative genic mutations of male infertility in humans remain rather limited. Here, we report the identification of a missense mutation (D136G) in the X-linked TAF7L gene as a potential cause of oligozoospermia in men. The human aspartate (D136) is evolutionally conserved across species, and its change to glycine (G) is predicted to be detrimental. Genetic complementation experiments in budding yeast demonstrate that the conserved aspartate or its analogous asparagine (N) residue in yeast TAF7 is essential for cell viability and thus its mutation to G is lethal. Although the corresponding D144G substitution in the mouse Taf7l gene does not affect male fertility, RNA-seq analyses reveal alterations in transcriptomic profiles in the Taf7l (D144G) mutant testes. These results support TAF7L mutation as a risk factor for oligozoospermia in humans.


Assuntos
Infertilidade Masculina , Oligospermia , Fatores Associados à Proteína de Ligação a TATA , Fator de Transcrição TFIID , Animais , Ácido Aspártico , Genes Ligados ao Cromossomo X/genética , Humanos , Infertilidade Masculina/genética , Masculino , Camundongos , Mutação , Mutação de Sentido Incorreto , Oligospermia/genética , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/genética
3.
J Vis Exp ; (149)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31305516

RESUMO

Preparation of high-quality mouse eye sections for immunohistochemistry (IHC) is critical for assessing the retinal structure and function and for determining the mechanisms underlying retinal diseases. Maintaining structural integrity throughout the tissue preparation is vital for obtaining reproducible retinal IHC data but can be challenging due to the fragility and complexity of retinal cytoarchitecture. Strong fixatives like 10% formalin or Bouin's solution optimally preserve the retinal structure, they often impede IHC analysis by enhancing the background fluorescence and/or diminishing antibody-epitope interactions, a process known as epitope masking. Milder fixatives, on the other hand, like 4% paraformaldehyde, reduces background fluorescence and epitope-masking, meticulous dissection techniques must be utilized to preserve the retinal structure. In this article, we present a comprehensive method to prepare mouse ocular posterior cups for IHC that is sufficient to preserve most antibody-epitope interactions without loss of retinal structural integrity. We include representative IHC with antibodies to various retinal cell type markers to illustrate tissue preservation and orientation under optimal and sub-optimal conditions. Our goal is to optimize IHC studies of the retina by providing a complete protocol from ocular posterior cup dissection to IHC.


Assuntos
Crioultramicrotomia , Retina/citologia , Animais , Dissecação , Imuno-Histoquímica , Camundongos Endogâmicos C57BL , Inclusão em Parafina , Coloração e Rotulagem
4.
Sci Rep ; 8(1): 12544, 2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30135513

RESUMO

Ndr2/Stk38l encodes a protein kinase associated with the Hippo tumor suppressor pathway and is mutated in a naturally-occurring canine early retinal degeneration (erd). To elucidate the retinal functions of Ndr2 and its paralog Ndr1/Stk38, we generated Ndr1 and Ndr2 single knockout mice. Although retinal lamination appeared normal in these mice, Ndr deletion caused a subset of Pax6-positive amacrine cells to proliferate in differentiated retinas, while concurrently decreasing the number of GABAergic, HuD and Pax6-positive amacrine cells. Retinal transcriptome analyses revealed that Ndr2 deletion increased expression of neuronal stress genes and decreased expression of synaptic organization genes. Consistent with the latter, Ndr deletion dramatically reduced levels of Aak1, an Ndr substrate that regulates vesicle trafficking. Our findings indicate that Ndr kinases are important regulators of amacrine and photoreceptor cells and suggest that Ndr kinases inhibit the proliferation of a subset of terminally differentiated cells and modulate interneuron synapse function via Aak1.


Assuntos
Interneurônios/citologia , Interneurônios/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Retina/citologia , Células Amácrinas/citologia , Animais , Proliferação de Células , Proteína Semelhante a ELAV 4/metabolismo , Regulação da Expressão Gênica , Homeostase , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Transcrição PAX6/metabolismo , Células Fotorreceptoras/metabolismo , Proteínas Serina-Treonina Quinases/genética , Retina/metabolismo , Células Bipolares da Retina/citologia , Células Bipolares da Retina/metabolismo
5.
J Cell Biol ; 202(1): 97-111, 2013 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-23836930

RESUMO

The rate of eukaryotic cell growth is tightly controlled for proper progression through each cell cycle stage and is important for cell size homeostasis. It was previously shown that cell growth is inhibited during mitosis when cells are preparing for division. However, the mechanism for growth arrest at this stage is unknown. Here we demonstrate that exocytosis of a select group of cargoes was inhibited before the metaphase-anaphase transition in the budding yeast Saccharomyces cerevisiae. The cyclin-dependent kinase, Cdk1, when bound to the mitotic cyclin Clb2, directly phosphorylated Exo84, a component of the exocyst complex essential for exocytosis. Mitotic phosphorylation of Exo84 disrupted the assembly of the exocyst complex, thereby affecting exocytosis and cell surface expansion. Our study demonstrates the coordination between membrane trafficking and cell cycle progression and provides a molecular mechanism by which cell growth is controlled during the cell division cycle.


Assuntos
Pontos de Checagem do Ciclo Celular , Exocitose , Proteínas de Membrana/metabolismo , Mitose , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Forma do Núcleo Celular , Ciclina B/genética , Ciclina B/metabolismo , Glucana Endo-1,3-beta-D-Glucosidase/genética , Glucana Endo-1,3-beta-D-Glucosidase/metabolismo , Imunoprecipitação , Proteínas de Membrana/genética , Mutação , Fosforilação , Ligação Proteica , Mapeamento de Interação de Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Tempo
6.
Eukaryot Cell ; 11(6): 708-17, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22544903

RESUMO

The regulation of Ace2 and morphogenesis (RAM) network is a protein kinase signaling pathway conserved among eukaryotes from yeasts to humans. Among fungi, the RAM network has been most extensively studied in the model yeast Saccharomyces cerevisiae and has been shown to regulate a range of cellular processes, including daughter cell-specific gene expression, cell cycle regulation, cell separation, mating, polarized growth, maintenance of cell wall integrity, and stress signaling. Increasing numbers of recent studies on the role of the RAM network in pathogenic fungal species have revealed that this network also plays an important role in the biology and pathogenesis of these organisms. In addition to providing a brief overview of the RAM network in S. cerevisiae, we summarize recent developments in the understanding of RAM network function in the human fungal pathogens Candida albicans, Candida glabrata, Cryptococcus neoformans, Aspergillus fumigatus, and Pneumocystis spp.


Assuntos
Proteínas Fúngicas/metabolismo , Fungos/enzimologia , Morfogênese , Proteínas Quinases/metabolismo , Transdução de Sinais , Proteínas de Ligação a DNA/metabolismo , Fungos/crescimento & desenvolvimento , Humanos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo
7.
Mol Biol Cell ; 22(24): 4892-907, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22031291

RESUMO

Saccharomyces cerevisiae Cbk1 kinase is a LATS/NDR tumor suppressor orthologue and component of the Regulation of Ace2 and Morphogenesis signaling network. Cbk1 was previously implicated in regulating polarized morphogenesis, gene expression, and cell integrity. Here we establish that Cbk1 is critical for heat shock and cell wall stress signaling via Bck2, a protein associated with the Pkc1-Mpk1 cell integrity pathway. We demonstrate that cbk1 and bck2 loss-of-function mutations prevent Mpk1 kinase activation and Mpk1-dependent gene expression but do not disrupt Mpk1 Thr-190/Tyr-192 phosphorylation. Bck2 overexpression partially restores Mpk1-dependent Rlm1 transcription factor activity in cbk1 mutants, suggesting that Bck2 functions downstream of Cbk1. We demonstrate that Bck2 precisely colocalizes with the mitogen-activated protein kinase (MAPK) phosphatase Sdp1. During heat shock, Bck2 and Sdp1 transiently redistribute from nuclei and the cytosol to mitochondria and other cytoplasmic puncta before returning to their pre-stressed localization patterns. Significantly, Cbk1 inhibition delays the return of Bck2 and Sdp1 to their pre-stressed localization patterns and delays Mpk1 Thr-190/Tyr-192 dephosphorylation upon heat shock adaptation. We conclude that Cbk1 and Bck2 are required for Mpk1 activation during heat shock and cell wall stress and for Mpk1 dephosphorylation during heat shock adaptation. These data provide the first evidence that Cbk1 kinase regulates MAPK-dependent stress signaling and provide mechanistic insight into Sdp1 phosphatase regulation.


Assuntos
Resposta ao Choque Térmico/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Quinases Ativadas por Mitógeno/biossíntese , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Ativação Enzimática/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação Fúngica da Expressão Gênica/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas de Saccharomyces cerevisiae/genética
8.
Mol Microbiol ; 81(3): 831-49, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21762218

RESUMO

Mechanisms that control mRNA metabolism are critical for cell function, development and stress response. The Saccharomyces cerevisiae mRNA-binding protein Ssd1 has been implicated in mRNA processing, ageing, stress response and maintenance of cell integrity. Ssd1 is a substrate of the LATS/NDR tumour suppressor orthologue Cbk1 kinase. Previous data indicate that Ssd1 localizes to the cytoplasm; however, biochemical interactions suggest that Ssd1 at least transiently localizes to the nucleus. We therefore explored whether nuclear localization is important for Ssd1 cytoplasmic functions. We identified a functional NLS in the N-terminal domain of Ssd1. An Ssd1-derived NLS-GFP fusion protein and several C-terminally truncated Ssd1 proteins, which presumably lack nuclear export sequences, accumulate in the nucleus. Alanine substitution of the Ssd1 NLS prevents Ssd1 nuclear entry, mRNA binding and disrupts Srl1 mRNA localization. Moreover, Ssd1-NLS mutations abolish Ssd1 toxicity in the absence of Cbk1 phosphorylation and cause Ssd1 to localize prominently to cytoplasmic puncta. These data indicate that nuclear shuttling is critical for Ssd1 mRNA binding and Ssd1-mRNA localization in the cytoplasm. Collectively these data support the model that Ssd1 functions analogously to hnRNPs, which bind mRNA co-transcriptionally, are exported to the cytoplasm and target mRNAs to sites of localized translation and P-bodies.


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Regulação Fúngica da Expressão Gênica , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular , Fusão Gênica Artificial , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Modelos Biológicos , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Sinais de Localização Nuclear , Proteínas de Saccharomyces cerevisiae/genética , Deleção de Sequência
9.
J Cell Biol ; 192(4): 583-98, 2011 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-21339329

RESUMO

The mRNA-binding protein Ssd1 is a substrate for the Saccharomyces cerevisiae LATS/NDR orthologue Cbk1, which controls polarized growth, cell separation, and cell integrity. We discovered that most Ssd1 localizes diffusely within the cytoplasm, but some transiently accumulates at sites of polarized growth. Cbk1 inhibition and cellular stress cause Ssd1 to redistribute to mRNA processing bodies (P-bodies) and stress granules, which are known to repress translation. Ssd1 recruitment to P-bodies is independent of mRNA binding and is promoted by the removal of Cbk1 phosphorylation sites. SSD1 deletion severely impairs the asymmetric localization of the Ssd1-associated mRNA, SRL1. Expression of phosphomimetic Ssd1 promotes polarized localization of SRL1 mRNA, whereas phosphorylation-deficient Ssd1 causes constitutive localization of SRL1 mRNA to P-bodies and causes cellular lysis. These data support the model that Cbk1-mediated phosphorylation of Ssd1 promotes the cortical localization of Ssd1-mRNA complexes, whereas Cbk1 inhibition, cellular stress, and Ssd1 dephosphorylation promote Ssd1-mRNA interactions with P-bodies and stress granules, leading to translational repression.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Crescimento Celular , Polaridade Celular , Citoplasma/metabolismo , Deleção de Genes , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/análise , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Mol Biol Cell ; 19(12): 5559-78, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18843045

RESUMO

Saccharomyces cerevisiae Cbk1 is a LATS/Ndr protein kinase and a downstream component of the regulation of Ace2 and morphogenesis (RAM) signaling network. Cbk1 and the RAM network are required for cellular morphogenesis, cell separation, and maintenance of cell integrity. Here, we examine the phenotypes of conditional cbk1 mutants to determine the essential function of Cbk1. Cbk1 inhibition severely disrupts growth and protein secretion, and triggers the Swe1-dependent morphogenesis checkpoint. Cbk1 inhibition also delays the polarity establishment of the exocytosis regulators Rab-GTPase Sec4 and its exchange factor Sec2, but it does not interfere with actin polarity establishment. Cbk1 binds to and phosphorylates Sec2, suggesting that it regulates Sec4-dependent exocytosis. Intriguingly, Cbk1 inhibition causes a >30% decrease in post-Golgi vesicle accumulation in late secretion mutants, indicating that Cbk1 also functions upstream of Sec2-Sec4, perhaps at the level of the Golgi. In agreement, conditional cbk1 mutants mislocalize the cis-Golgi mannosyltransferase Och1, are hypersensitive to the aminoglycoside hygromycin B, and exhibit diminished invertase and Sim1 glycosylation. Significantly, the conditional lethality and hygromycin B sensitivity of cbk1 mutants are suppressed by moderate overexpression of several Golgi mannosyltransferases. These data suggest that an important function for Cbk1 and the RAM signaling network is to regulate growth and secretion via Golgi and Sec2/Sec4-dependent processes.


Assuntos
Proteínas Fúngicas/metabolismo , Complexo de Golgi/metabolismo , Saccharomyces cerevisiae , Anti-Helmínticos/metabolismo , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Polaridade Celular , Citoesqueleto/metabolismo , Corantes Fluorescentes/metabolismo , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/genética , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Glucana Endo-1,3-beta-D-Glucosidase/genética , Glucana Endo-1,3-beta-D-Glucosidase/metabolismo , Glicosilação , Fatores de Troca do Nucleotídeo Guanina , Higromicina B/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Manosiltransferases/genética , Manosiltransferases/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Fenótipo , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Compostos de Piridínio/metabolismo , Compostos de Amônio Quaternário/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Vacúolos/ultraestrutura , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
11.
Mol Cancer Res ; 5(12): 1304-11, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18171988

RESUMO

A molecular pathway homologous to the S. cerevisiae mitotic exit network (MEN) and S. pombe septation initiation network has recently been described in higher eukaryotes and involves the tumor suppressor kinase LATS1 and its subunit MOB1A. The yeast MEN/septation initiation network pathways are regulated by the ubiquitin ligase defective in mitotic arrest 1 (Dma1p), a checkpoint protein that helps maintain prometaphase arrest when cells are exposed to microtubule poisons. We identified here the RING domain protein ring finger 8 (RNF8) as the human orthologue of the yeast protein Dma1p. Like its yeast counterparts, human DMA1/RNF8 localized at the midbody and its depletion by siRNA compromised mitotic arrest of nocodazole-treated cells in a manner dependent on the MEN. Depletion of MAD2, a spindle checkpoint protein, also compromised mitotic arrest, but in a MEN-independent manner. Thus, two distinct checkpoint pathways maintain mitotic arrest in cells exposed to microtubule poisons.


Assuntos
Proteínas de Ligação a DNA/genética , Genes cdc , Mitose/genética , Sequência de Aminoácidos , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Ciclina A/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Células HeLa , Humanos , Dados de Sequência Molecular , Osteossarcoma , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Schizosaccharomyces pombe/genética , Ubiquitina-Proteína Ligases
12.
Mol Biol Cell ; 16(12): 5465-79, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16176976

RESUMO

The Saccharomyces cerevisiae mitotic exit network (MEN) is a conserved signaling network that coordinates CDK inactivation, cytokinesis and G1 gene transcription. The MEN Cdc14p phosphatase is sequestered in the nucleolus and transiently released in early anaphase and telophase. Cdc14p mediates mitotic exit by dephosphorylating Cdk1p substrates and promoting Cdk1p inactivation. Cdc14p also regulates the localization of chromosomal passenger proteins, which redistribute from kinetochores to the mitotic spindle during anaphase. Here we present evidence that the MEN protein kinase complex Mob1p-Dbf2p localizes to mitotic nuclei and partially colocalizes with Cdc14p and kinetochore proteins. Chromatin immunoprecipitation (ChIP) experiments reveal that Mob1p, Dbf2p, and Cdc14p associate with centromere DNA and require the centromere binding protein Ndc10p for this association. We establish that Mob1p is essential for maintaining the localization of Aurora, INCENP, and Survivin chromosomal passenger proteins on anaphase spindles, whereas Cdc14p and the Mob1p-Dbf2p-activating kinase Cdc15p are required for establishing passenger protein localization on the spindle. Moreover, Mob1p, but not Cdc15p, is required for dissociating Aurora from the kinetochore region. These findings reveal kinetochores as sites for MEN signaling and implicate MEN in coordinating chromosome segregation and/or spindle integrity with mitotic exit and cytokinesis via regulation of chromosome passenger proteins.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiologia , Núcleo Celular/enzimologia , Mitose/fisiologia , Fosfoproteínas/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/fisiologia , Fuso Acromático/fisiologia , Núcleo Celular/ultraestrutura , Cromatina/fisiologia , Cromatina/ultraestrutura , Genes Reporter , Cinetocoros/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Fosfatases/metabolismo , Transcrição Gênica , Transfecção
13.
Cancer Res ; 65(15): 6568-75, 2005 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16061636

RESUMO

The kinase LATS/WARTS is a tumor suppressor protein conserved in evolution, but its function at the molecular level is not well understood. We report here that human LATS1 interacts with MOB1A, a protein whose homologue in budding yeast associates with kinases involved in mitotic exit. This suggested that LATS1 may be a component of the previously uncharacterized mitotic exit network in higher eukaryotes. Indeed, moderate overexpression of human LATS1 in cells exposed to microtubule poisons facilitated mitotic exit, and this activity required MOB1A. Reciprocally, small interfering RNA-mediated suppression of LATS1 or MOB1A prolonged telophase, but had no effect on the length of the earlier phases of mitosis. A role of LATS1 in mitotic exit may explain its previously described abilities to induce G2 arrest and promote cytokinesis.


Assuntos
Mitose/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Centrossomo/metabolismo , Células HeLa , Humanos , Dados de Sequência Molecular , Osteossarcoma/enzimologia , Osteossarcoma/patologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Telófase/fisiologia , Transfecção
14.
Genetics ; 171(2): 443-55, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15972461

RESUMO

Saccharomyces cerevisiae RAM is a conserved signaling network that regulates maintenance of polarized growth and daughter-cell-specific transcription, the latter of which is critical for septum degradation. Consequently, cells defective in RAM function (designated ramDelta) are round in morphology, form feeble mating projections, and fail to separate following cytokinesis. It was recently demonstrated that RAM genes are essential in strains containing functional SSD1 (SSD1-v), which encodes a protein of unknown function that binds the RAM Cbk1p kinase. Here we investigated the essential function of RAM in SSD1-v strains and identified two functional groups of dosage suppressors for ramDelta lethality. We establish that all ramDelta mutants exhibit cell integrity defects and cell lysis. All dosage suppressors rescue the lysis but not the cell polarity or cell separation defects of ramDelta cells. One class of dosage suppressors is composed of genes encoding cell wall proteins, indicating that alterations in cell wall structure can rescue the cell lysis in ramDelta cells. Another class of ramDelta dosage suppressors is composed of ZRG8 and SRL1, which encode two unrelated proteins of unknown function. We establish that ZRG8 and SRL1 share similar genetic interactions and phenotypes. Significantly, Zrg8p coprecipitates with Ssd1p, localizes similarly to RAM proteins, and is dependent on RAM for localization. Collectively, these data indicate that RAM and Ssd1p function cooperatively to control cell integrity and suggest that Zrg8p and Srl1p function as nonessential inhibitors of Ssd1p.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Morfogênese/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Polaridade Celular/genética , Parede Celular/genética , Proteínas de Ligação a DNA/genética , Immunoblotting , Imunoprecipitação , Microscopia de Fluorescência , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
15.
Cell Cycle ; 4(7): 961-71, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15917648

RESUMO

The mitotic exit network (MEN) controls the exit from mitosis in budding yeast. The proline-directed phosphatase, Cdc14p, is a key component of MEN and promotes mitotic exit by activating the degradation of Clb2p and by reversing Cdk-mediated mitotic phosphorylation. Cdc14p is sequestered in the nucleolus during much of the cell cycle and is released in anaphase from the nucleolus to the nucleoplasm and cytoplasm to perform its functions. Release of Cdc14p from the nucleolus during anaphase is well understood. In contrast, less is known about the mechanism by which Cdc14p is released from the nucleus to the cytoplasm. Here we show that Cdc14p contains a leucine-rich nuclear export signal (NES) that interacts with Crm1p physically. Mutations in the NES of Cdc14p allow Clb2p degradation and mitotic exit, but cause abnormal morphology and cytokinesis defects at non-permissive temperatures. Cdc14p localizes to the bud neck, among other cytoplasmic structures, following its release from the nucleolus in late anaphase. This bud neck localization of Cdc14p is disrupted by mutations in its NES and by the leptomycin B-mediated inhibition of Crm1p. Our results suggest a requirement for Crm1p-dependent nuclear export of Cdc14p in coordinating mitotic exit and cytokinesis in budding yeast.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Carioferinas/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/citologia , Saccharomycetales/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular/química , Células Cultivadas , Ciclina B/metabolismo , Citocinese , Fosfatases de Especificidade Dupla , Ácidos Graxos Insaturados/farmacologia , Humanos , Camundongos , Dados de Sequência Molecular , Mutação/genética , Sinais de Exportação Nuclear , Fenótipo , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/metabolismo , Transporte Proteico , Proteínas Tirosina Fosfatases/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomycetales/efeitos dos fármacos , Alinhamento de Sequência , Proteína Exportina 1
16.
Mol Biol Cell ; 14(9): 3782-803, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12972564

RESUMO

In Saccharomyces cerevisiae, polarized morphogenesis is critical for bud site selection, bud development, and cell separation. The latter is mediated by Ace2p transcription factor, which controls the daughter cell-specific expression of cell separation genes. Recently, a set of proteins that include Cbk1p kinase, its binding partner Mob2p, Tao3p (Pag1p), and Hym1p were shown to regulate both Ace2p activity and cellular morphogenesis. These proteins seem to form a signaling network, which we designate RAM for regulation of Ace2p activity and cellular morphogenesis. To find additional RAM components, we conducted genetic screens for bilateral mating and cell separation mutants and identified alleles of the PAK-related kinase Kic1p in addition to Cbk1p, Mob2p, Tao3p, and Hym1p. Deletion of each RAM gene resulted in a loss of Ace2p function and caused cell polarity defects that were distinct from formin or polarisome mutants. Two-hybrid and coimmunoprecipitation experiments reveal a complex network of interactions among the RAM proteins, including Cbk1p-Cbk1p, Cbk1p-Kic1p, Kic1p-Tao3p, and Kic1p-Hym1p interactions, in addition to the previously documented Cbk1p-Mob2p and Cbk1p-Tao3p interactions. We also identified a novel leucine-rich repeat-containing protein Sog2p that interacts with Hym1p and Kic1p. Cells lacking Sog2p exhibited the characteristic cell separation and cell morphology defects associated with perturbation in RAM signaling. Each RAM protein localized to cortical sites of growth during both budding and mating pheromone response. Hym1p was Kic1p- and Sog2p-dependent and Sog2p and Kic1p were interdependent for localization, indicating a close functional relationship between these proteins. Only Mob2p and Cbk1p were detectable in the daughter cell nucleus at the end of mitosis. The nuclear localization and kinase activity of the Mob2p-Cbk1p complex were dependent on all other RAM proteins, suggesting that Mob2p-Cbk1p functions late in the RAM network. Our data suggest that the functional architecture of RAM signaling is similar to the S. cerevisiae mitotic exit network and Schizosaccharomyces pombe septation initiation network and is likely conserved among eukaryotes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Fatores de Transcrição/metabolismo , Polaridade Celular/genética , Polaridade Celular/fisiologia , Testes Genéticos , Peptídeos e Proteínas de Sinalização Intracelular , Modelos Moleculares , Morfogênese/genética , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Serina-Treonina Quinases , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Ativação Transcricional , Técnicas do Sistema de Duplo-Híbrido
17.
Structure ; 11(9): 1163-70, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12962634

RESUMO

The Mob protein family comprises a group of highly conserved eukaryotic proteins whose founding member functions in the mitotic exit network. At the molecular level, Mob proteins act as kinase-activating subunits. We cloned a human Mob1 family member, Mob1A, and determined its three-dimensional structure by X-ray crystallography. The core of Mob1A consists of a four-helix bundle that is stabilized by a bound zinc atom. The N-terminal helix of the bundle is solvent exposed and together with adjacent secondary structure elements forms an evolutionarily conserved surface with a strong negative electrostatic potential. Several conditional mutant alleles of S. cerevisiae MOB1 target this surface and decrease its net negative charge. Interestingly, the kinases with which yeast Mob proteins interact have two conserved basic regions within their N-terminal lobe. Thus, Mob proteins may regulate their target kinases through electrostatic interactions mediated by conserved charged surfaces.


Assuntos
Ciclo Celular , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Sequência de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cristalografia por Raios X , Humanos , Proteínas de Membrana/genética , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Conformação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Transferases (Outros Grupos de Fosfato Substituídos)
18.
J Cell Biol ; 158(5): 885-900, 2002 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-12196508

RESUMO

The Saccharomyces cerevisiae mitotic exit network (MEN) is a conserved signaling network that coordinates events associated with the M to G1 transition. We investigated the function of two S. cerevisiae proteins related to the MEN proteins Mob1p and Dbf2p kinase. Previous work indicates that cells lacking the Dbf2p-related protein Cbk1p fail to sustain polarized growth during early bud morphogenesis and mating projection formation (Bidlingmaier, S., E.L. Weiss, C. Seidel, D.G. Drubin, and M. Snyder. 2001. Mol. Cell. Biol. 21:2449-2462). Cbk1p is also required for Ace2p-dependent transcription of genes involved in mother/daughter separation after cytokinesis. Here we show that the Mob1p-related protein Mob2p physically associates with Cbk1p kinase throughout the cell cycle and is required for full Cbk1p kinase activity, which is periodically activated during polarized growth and mitosis. Both Mob2p and Cbk1p localize interdependently to the bud cortex during polarized growth and to the bud neck and daughter cell nucleus during late mitosis. We found that Ace2p is restricted to daughter cell nuclei via a novel mechanism requiring Mob2p, Cbk1p, and a functional nuclear export pathway. Furthermore, nuclear localization of Mob2p and Ace2p does not occur in mob1-77 or cdc14-1 mutants, which are defective in MEN signaling, even when cell cycle arrest is bypassed. Collectively, these data indicate that Mob2p-Cbk1p functions to (a) maintain polarized cell growth, (b) prevent the nuclear export of Ace2p from the daughter cell nucleus after mitotic exit, and (c) coordinate Ace2p-dependent transcription with MEN activation. These findings may implicate related proteins in linking the regulation of cell morphology and cell cycle transitions with cell fate determination and development.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Polaridade Celular , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Mitose , Fosfoproteínas/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular , Divisão Celular , Núcleo Celular/metabolismo , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Substâncias Macromoleculares , Morfogênese , Ligação Proteica , Proteínas Serina-Treonina Quinases , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA