RESUMO
Static magnetic field effect in the framework of the radial pair mechanism (RPM) theory was studied on the biologically significant chemical reaction between ascorbic acid and Fremy's salt. The data indicate that the reaction rate depends on the applied magnetic field strength. The time scale of the studied reaction and the improved continuous-wave electron paramagnetic resonance system allowed for the first time the direct comparison of the amplitude differences between exposed and control samples in the strictly same boundary conditions. Until now the RPM was studied in a different time scale, focusing only on faster reactions by time-resolved techniques or by spectrophotometer measurement. The magnetic field effects presently measured can not be extended tout court to living systems; however the understanding of magnetic field sensitivity in basic chemical reaction in vitro could help clarifying the underlying basic step of interaction between magnetic fields and biological systems.
Assuntos
Ácido Ascórbico/química , Magnetismo , Compostos Nitrosos/química , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres/química , Cinética , OxirreduçãoRESUMO
The magnetic properties of cobalt ferrite nanoparticles dispersed in a silica matrix in samples with different concentrations (5 and 10 wt% CoFe2O 4) and same particle size (3 nm) were studied by magnetization, DC and AC susceptibility, and Mossbauer spectroscopy measurements. The results indicate that the particles are very weakly interacting. The magnetic properties (saturation magnetization, anisotropy constant, and spin-canting) are discussed in relation to the cation distribution.