RESUMO
BACKGROUND: STING-associated vasculopathy with onset in infancy (SAVI) is a rare type I interferonopathy caused by heterozygous variants in the STING gene. In SAVI, STING variants confer a gain-of-function which causes overactivation of type I interferon (IFN) signaling leading to autoinflammation and various degrees of immunodeficiency and autoimmunity. CASE PRESENTATION: We report the case of a 5 year old child and his mother, both of whom presented with systemic inflammatory symptoms yet widely varying organ involvement, disease course and therapeutic response. Genetic testing revealed a heterozygous STING variant, R281Q, in the child and his mother that had previously been associated with SAVI. However, in contrast to previously reported SAVI cases due to the R281Q variant, our patients showed an atypical course of disease with alopecia totalis in the child and a complete lack of lung involvement in the mother. CONCLUSIONS: Our findings demonstrate the phenotypic breadth of clinical SAVI manifestations. Given the therapeutic benefit of treatment with JAK inhibitors, early genetic testing for SAVI should be considered in patients with unclear systemic inflammation involving cutaneous, pulmonary, or musculoskeletal symptoms, and signs of immunodeficiency and autoimmunity.
Assuntos
Síndromes de Imunodeficiência , Interferon Tipo I , Doenças Vasculares , Pré-Escolar , Humanos , Inflamação/genética , Interferon Tipo I/genética , Pulmão , Mutação , Doenças Vasculares/genética , Masculino , FemininoRESUMO
C-terminal variants in CDC42 encoding cell division control protein 42 homolog underlie neonatal-onset cytopenia, autoinflammation, rash, and hemophagocytic lymphohistiocytosis (NOCARH). Pyrin inflammasome hyperactivation has been shown to contribute to disease pathophysiology. However, mortality of NOCARH patients remains high despite inflammasome-focused treatments. Here, we demonstrate in four NOCARH patients from three families that cell-intrinsic activation of type I interferon (IFN) is a previously unrecognized driver of autoinflammation in NOCARH. Our data show that aberrant innate immune activation is caused by sensing of cytosolic nucleic acids released from mitochondria, which exhibit disturbances in integrity and dynamics due to CDC42 dysfunction. In one of our patients, treatment with the Janus kinase inhibitor ruxolitinib led to complete remission, indicating that inhibition of type I IFN signaling may have an important role in the management of autoinflammation in patients with NOCARH.
Assuntos
Interferon Tipo I , Linfo-Histiocitose Hemofagocítica , Humanos , Recém-Nascido , Proteína cdc42 de Ligação ao GTP , Inflamassomos/genética , Linfo-Histiocitose Hemofagocítica/etiologia , Nitrilas , SíndromeRESUMO
OBJECTIVES: Inborn errors of immunity manifest with susceptibility to infection but may also present with immune dysregulation only. According to the European Society for Immunodeficiencies Registry about 50% of inborn errors of immunity are classified as common variable immunodeficiencies (CVID). In only few CVID patients are monogenic causes identified. IFN regulatory factor-2 binding protein 2 (IRF2BP2) is one of 20 known genes associated with CVID phenotypes and has only been reported in two families so far. We report another IRF2BP2-deficient patient with a novel pathogenic variant and phenotype and characterize impaired B cell function and immune dysregulation. METHODS: We performed trio whole-exome sequencing, determined B cell subpopulations and intracellular calcium mobilization upon B cell receptor crosslinking in B cells. T cell subpopulations, T cell proliferation and a type I IFN signature were measured. Colonoscopy and gastroduodenoscopy including histopathology were performed. RESULTS: The 33-year-old male presented with recurrent respiratory infections since childhood, colitis and RA beginning at age 25 years. We identified a novel de novo nonsense IRF2BP2 variant c.1618C>T; p.(Q540*). IgG deficiency was detected as consequence of a severe B cell differentiation defect. This was confirmed by impaired plasmablast formation upon stimulation with CpG. No serum autoantibodies were detected. Intracellular cytokine production in CD4+ T cells and CTLA4 expression on FOXP3+ Tregs were impaired. Type I IFN signature was elevated. CONCLUSION: The identified loss-of-function variant in IRF2BP2 severely impairs B cell development and T cell homeostasis, and may be associated with colitis and RA. Our results provide further evidence for association of IRF2BP2 with CVID and contribute to the understanding of the underlying pathomechanisms.
Assuntos
Linfócitos T CD4-Positivos , Fatores de Transcrição , Masculino , Linfócitos B , Mutação , Fenótipo , Humanos , AdultoRESUMO
Gain-of-function variants in the stimulator of interferon response cGAMP interactor 1 (STING1) gene cause STING-Associated Vasculopathy with onset in Infancy (SAVI). Previously, only heterozygous and mostly de novo STING1 variants have been reported to cause SAVI. Interestingly, one variant that only leads to SAVI when homozygous, namely c.841C>T p.(Arg281Trp), has recently been described. However, there are no entries in public databases regarding an autosomal recessive pattern of inheritance. Here, we report four additional unrelated SAVI patients carrying c.841C>T in homozygous state. All patients had interstitial lung disease and displayed typical interferon activation patterns. Only one child displayed cutaneous vasculitis, while three other patients presented with a relatively mild SAVI phenotype. Steroid and baricitinib treatment had a mitigating effect on the disease phenotype in two cases, but failed to halt disease progression. Heterozygous c.841C>T carriers in our analysis were healthy and showed normal interferon activation. Literature review identified eight additional cases with autosomal recessive SAVI caused by c.841C>T homozygosity. In summary, we present four novel and eight historic cases of autosomal recessive SAVI. We provide comprehensive clinical data and show treatment regimens and clinical responses. To date, SAVI has been listed as an exclusively autosomal dominant inherited trait in relevant databases. With this report, we aim to raise awareness for autosomal recessive inheritance in this rare, severe disease which may aid in early diagnosis and development of optimized treatment strategies.
Assuntos
Dermatopatias Vasculares , Doenças Vasculares , Humanos , Proteínas de Membrana/genética , Mutação , Doenças Vasculares/genética , Interferons/genéticaRESUMO
Recognition of pathogen-derived foreign nucleic acids is central to innate immune defense. This requires discrimination between structurally highly similar self and nonself nucleic acids to avoid aberrant inflammatory responses as in the autoinflammatory disorder Aicardi-Goutières syndrome (AGS). How vast amounts of self RNA are shielded from immune recognition to prevent autoinflammation is not fully understood. Here, we show that human SAM-domain- and HD-domain-containing protein 1 (SAMHD1), one of the AGS-causing genes, functions as a single-stranded RNA (ssRNA) 3'exonuclease, the lack of which causes cellular RNA accumulation. Increased ssRNA in cells leads to dissolution of RNA-protein condensates, which sequester immunogenic double-stranded RNA (dsRNA). Release of sequestered dsRNA from condensates triggers activation of antiviral type I interferon via retinoic-acid-inducible gene I-like receptors. Our results establish SAMHD1 as a key regulator of cellular RNA homeostasis and demonstrate that buffering of immunogenic self RNA by condensates regulates innate immune responses.
Assuntos
Interferon Tipo I , RNA de Cadeia Dupla , Antivirais , Doenças Autoimunes do Sistema Nervoso , Exonucleases/genética , Humanos , Imunidade Inata/genética , Interferon Tipo I/genética , Malformações do Sistema Nervoso , RNA de Cadeia Dupla/genética , Proteína 1 com Domínio SAM e Domínio HD/genéticaRESUMO
BACKGROUND: Aicardi-Goutières syndrome (AGS) is a clinically and genetically heterogenous autoinflammatory disorder caused by constitutive activation of the type I interferon axis. It has been associated with the genes TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR1, IFIH1. The clinical diagnosis of AGS is usually made in the context of early-onset encephalopathy in combination with basal ganglia calcification or white matter abnormalities on cranial MRI and laboratory prove of interferon I activation. CASE PRESENTATION: We report a patient with early-onset encephalopathy, severe neurodevelopmental regression, progressive secondary microcephaly, epilepsy, movement disorder, and white matter hyperintensities on T2 weighted MRI images. Via whole-exome sequencing, we identified a novel homozygous missense variant (c.1399C > T, p.Pro467Ser) in PNPT1 (NM_033109). Longitudinal assessment of the interferon signature showed a massively elevated interferon score and chronic type I interferon-mediated autoinflammation. CONCLUSION: Bi-allelic mutations in PNPT1 have been reported in early-onset encephalopathy. Insufficient nuclear RNA import into mitochondria with consecutive disruption of the respiratory chain was proposed as the main underlying pathomechanism. Recent studies have shown that PNPT1 deficiency causes an accumulation of double-stranded mtRNAs in the cytoplasm, leading to aberrant type I interferon activation, however, longitudinal assessment has been lacking. Here, we present a case of AGS with continuously elevated type I interferon signature with a novel likely-pathogenic homozygous PNTP1 variant. We highlight the clinical value of assessing the interferon signature in children with encephalopathy of unknown origin and suggest all patients presenting with a phenotype of AGS should be screened for mutations in PNPT1.
Assuntos
Doenças Autoimunes do Sistema Nervoso/genética , Exorribonucleases/genética , Malformações do Sistema Nervoso/genética , Epilepsia/genética , Exorribonucleases/metabolismo , Feminino , Humanos , Lactente , Interferon Tipo I/imunologia , Imageamento por Ressonância Magnética , Microcefalia/genética , Mutação , FenótipoRESUMO
Next-generation sequencing is increasingly applied during the diagnostic work-up of patients with bleeding diathesis and has facilitated the diagnosis of rare bleeding disorders such as inherited platelet function disorders. Mutations in RAS guanyl releasing protein 2 (RasGRP2), also known as calcium- and diacylglycerol-regulated guanine nucleotide exchange factor I (CalDAG-GEFI), underlie a recently described platelet signal transduction abnormality. Here we present the case of a consanguineous family originating from Afghanistan with two siblings affected by recurrent severe mucocutaneous bleedings. Platelet function testing demonstrated a marked reduction of aggregation induced by collagen and adenosine diphosphate. Whole exome sequencing revealed a novel homozygous nonsense RASGRP2 mutation segregating with the bleeding disorder in the family.
Assuntos
Carcinoma de Células Escamosas/genética , DNA Helicases/genética , Predisposição Genética para Doença , Ceratose/genética , Esclerodermia Localizada/genética , Neoplasias Cutâneas/genética , Adulto , Carcinoma de Células Escamosas/patologia , Células Cultivadas , Feminino , Fibroblastos , Haploinsuficiência , Humanos , Isoenzimas/genética , Queratinócitos , Ceratose/patologia , Masculino , Pessoa de Meia-Idade , Linhagem , Polimorfismo de Nucleotídeo Único , Cultura Primária de Células , Esclerodermia Localizada/patologia , Pele/citologia , Pele/patologia , Neoplasias Cutâneas/patologia , Sequenciamento Completo do Genoma , Adulto JovemRESUMO
Aicardi-Goutières syndrome (AGS) is a hereditary inflammatory encephalopathy resulting in severe neurological damage in the majority of cases. We report on two siblings with AGS6 due to compound heterozygosity for a known and a novel mutation in the ADAR gene and a strikingly variable phenotype. The first sibling presented at 12 months of age with a subacute encephalopathy following a mild respiratory infection. The child developed a spastic tetraparesis, generalized dystonia and dysarthria. In contrast, the younger sibling presented with an acute episode of neurological impairment in his third year of life, from which he recovered without sequelae within a few weeks. These findings illustrate a striking intrafamilial phenotypic variability in patients with AGS6 and describe the first case of a full recovery from an acute encephalopathy in an AGS patient. Our findings also suggest that AGS should be considered as an important differential diagnosis of an infection-triggered encephalopathy in infancy despite the absence of typical neuroimaging findings.