Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Nat Commun ; 15(1): 6387, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39080318

RESUMO

Legumes acquire nitrogen-fixing ability by forming root nodules. Transferring this capability to more crops could reduce our reliance on nitrogen fertilizers, thereby decreasing environmental pollution and agricultural production costs. Nodule organogenesis is complex, and a comprehensive transcriptomic atlas is crucial for understanding the underlying molecular events. Here, we utilized spatial transcriptomics to investigate the development of nodules in the model legume, Lotus japonicus. Our investigation has identified the developmental trajectories of two critical regions within the nodule: the infection zone and peripheral tissues. We reveal the underlying biological processes and provide gene sets to achieve symbiosis and material exchange, two essential aspects of nodulation. Among the candidate regulatory genes, we illustrate that LjNLP3, a transcription factor belonging to the NIN-LIKE PROTEIN family, orchestrates the transition of nodules from the differentiation to maturation. In summary, our research advances our understanding of nodule organogenesis and provides valuable data for developing symbiotic nitrogen-fixing crops.


Assuntos
Regulação da Expressão Gênica de Plantas , Lotus , Fixação de Nitrogênio , Proteínas de Plantas , Nódulos Radiculares de Plantas , Transcriptoma , Lotus/genética , Lotus/metabolismo , Lotus/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fixação de Nitrogênio/genética , Simbiose/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Nodulação/genética , Perfilação da Expressão Gênica , Análise Espaço-Temporal , Organogênese Vegetal/genética , Organogênese/genética
2.
J Exp Bot ; 75(7): 2176-2190, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38113277

RESUMO

Under depleted external phosphate (Pi), many plant species adapt to this stress by initiating downstream signaling cascades. In plants, the vascular system delivers nutrients and signaling agents to control physiological and developmental processes. Currently, limited information is available regarding the direct role of phloem-borne long-distance signals in plant growth and development under Pi stress conditions. Here, we report on the identification and characterization of a cucumber protein, Cucumis sativus Phloem Phosphate Stress-Repressed 1 (CsPPSR1), whose level in the phloem translocation stream rapidly responds to imposed Pi-limiting conditions. CsPPSR1 degradation is mediated by the 26S proteasome; under Pi-sufficient conditions, CsPPSR1 is stabilized by its phosphorylation within the sieve tube system through the action of CsPPSR1 kinase. Further, we discovered that CsPPSR1 kinase was susceptible to Pi starvation-induced degradation in the sieve tube system. Our findings offer insight into a molecular mechanism underlying the response of phloem-borne proteins to Pi-limited stress conditions.


Assuntos
Cucumis sativus , Cucumis sativus/metabolismo , Floema/metabolismo , Fosfatos/metabolismo , Proteínas de Plantas/metabolismo
3.
aBIOTECH ; 4(4): 315-331, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38106432

RESUMO

Root system architecture (RSA) plays a pivotal role in efficient uptake of essential nutrients, such as phosphorous (P), nitrogen (N), and water. In soils with heterogeneous nutrient distribution, root plasticity can optimize acquisition and plant growth. Here, we present evidence that a constitutive RSA can confer benefits for sorghum grown under both sufficient and limiting growth conditions. Our studies, using P efficient SC103 and inefficient BTx635 sorghum cultivars, identified significant differences in root traits, with SC103 developing a larger root system with more and longer lateral roots, and enhanced shoot biomass, under both nutrient sufficient and deficient conditions. In addition to this constitutive attribute, under P deficiency, both cultivars exhibited an initial increase in lateral root development; however, SC103 still maintained the larger root biomass. Although N deficiency and drought stress inhibited both root and shoot growth, for both sorghum cultivars, SC103 again maintained the better performance. These findings reveal that SC103, a P efficient sorghum cultivar, also exhibited enhanced growth performance under N deficiency and drought. Our results provide evidence that this constitutive nature of RSA can provide an avenue for breeding nutrient- and drought-resilient crops. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-023-00112-w.

4.
J Exp Bot ; 74(15): 4401-4414, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37210666

RESUMO

Plasmodesmata (PD) are plasma membrane-lined cytoplasmic nanochannels that mediate cell-to-cell communication across the cell wall. A range of proteins are embedded in the PD plasma membrane and endoplasmic reticulum (ER), and function in regulating PD-mediated symplasmic trafficking. However, knowledge of the nature and function of the ER-embedded proteins in the intercellular movement of non-cell-autonomous proteins is limited. Here, we report the functional characterization of two ER luminal proteins, AtBiP1/2, and two ER integral membrane proteins, AtERdj2A/B, which are located within the PD. These PD proteins were identified as interacting proteins with cucumber mosaic virus (CMV) movement protein (MP) in co-immunoprecipitation studies using an Arabidopsis-derived plasmodesmal-enriched cell wall protein preparation (PECP). The AtBiP1/2 PD location was confirmed by TEM-based immunolocalization, and their AtBiP1/2 signal peptides (SPs) function in PD targeting. In vitro/in vivo pull-down assays revealed the association between AtBiP1/2 and CMV MP, mediated by AtERdj2A, through the formation of an AtBiP1/2-AtERdj2-CMV MP complex within PD. The role of this complex in CMV infection was established, as systemic infection was retarded in bip1/bip2w and erdj2b mutants. Our findings provide a model for a mechanism by which the CMV MP mediates cell-to-cell trafficking of its viral ribonucleoprotein complex.


Assuntos
Arabidopsis , Cucumovirus , Infecções por Citomegalovirus , Arabidopsis/metabolismo , Plasmodesmos/metabolismo , Cucumovirus/metabolismo , Retículo Endoplasmático/metabolismo , Infecções por Citomegalovirus/metabolismo , Proteínas do Movimento Viral em Plantas/genética , Proteínas do Movimento Viral em Plantas/metabolismo , Nicotiana/metabolismo
5.
New Phytol ; 238(3): 995-1003, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36732026

RESUMO

Membrane-localized transporters constitute important components for specialized metabolism in plants. However, due to the vast array of specialized metabolites produced by plants, and the large families of transporter genes, knowledge about the intracellular and intercellular transport of plant metabolites is still in its infancy. Cucurbitacins are bitter and defensive triterpenoids produced mainly in the cucurbits. Using a comparative genomics and multi-omics approach, a MATE gene (CsMATE1), physically clustered with cucurbitacin C (CuC) biosynthetic genes, was identified and functionally shown to sequester CuC in cucumber leaf mesophyll cells. Notably, the CuC transport process is strictly co-regulated with CuC biosynthesis. CsMATE1 clustering with bitterness biosynthesis genes may provide benefits and a basis for this feedback regulation on CuC sequestration and biosynthesis. Identification of transport systems for plant-specialized metabolites can accelerate the metabolic engineering of high-value-added compounds by simplifying their purification process.


Assuntos
Cucumis sativus , Triterpenos , Cucurbitacinas/metabolismo , Cucumis sativus/genética , Cucumis sativus/metabolismo , Proteína C/metabolismo , Triterpenos/metabolismo , Plantas/metabolismo
6.
Nat Plants ; 8(8): 887-896, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35915145

RESUMO

Underground microbial ecosystems have profound impacts on plant health1-5. Recently, essential roles have been shown for plant specialized metabolites in shaping the rhizosphere microbiome6-9. However, the potential mechanisms underlying the root-to-soil delivery of these metabolites remain to be elucidated10. Cucurbitacins, the characteristic bitter triterpenoids in cucurbit plants (such as melon and watermelon), are synthesized by operon-like gene clusters11. Here we report two Multidrug and Toxic Compound Extrusion (MATE) proteins involved in the transport of their respective cucurbitacins, a process co-regulated with cucurbitacin biosynthesis. We further show that the transport of cucurbitacin B from the roots of melon into the soil modulates the rhizosphere microbiome by selectively enriching for two bacterial genera, Enterobacter and Bacillus, and we demonstrate that this, in turn, leads to robust resistance against the soil-borne wilt fungal pathogen, Fusarium oxysporum. Our study offers insights into how transporters for specialized metabolites manipulate the rhizosphere microbiota and thereby affect crop fitness.


Assuntos
Cucurbitaceae , Microbiota , Cucurbitacinas , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Rizosfera , Solo , Microbiologia do Solo
8.
Hortic Res ; 8(1): 178, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34333546

RESUMO

Organic tea is more popular than conventional tea that originates from fertilized plants. Amino acids inorganic soils constitute a substantial pool nitrogen (N) available for plants. However, the amino-acid contents in soils of tea plantations and how tea plants take up these amino acids remain largely unknown. In this study, we show that the amino-acid content in the soil of an organic tea plantation is significantly higher than that of a conventional tea plantation. Glutamate, alanine, valine, and leucine were the most abundant amino acids in the soil of this tea plantation. When 15N-glutamate was fed to tea plants, it was efficiently absorbed and significantly increased the contents of other amino acids in the roots. We cloned seven CsLHT genes encoding amino-acid transporters and found that the expression of CsLHT1, CsLHT2, and CsLHT6 in the roots significantly increased upon glutamate feeding. Moreover, the expression of CsLHT1 or CsLHT6 in a yeast amino-acid uptake-defective mutant, 22∆10α, enabled growth on media with amino acids constituting the sole N source. Amino-acid uptake assays indicated that CsLHT1 and CsLHT6 are H+-dependent high- and low-affinity amino-acid transporters, respectively. We further demonstrated that CsLHT1 and CsLHT6 are highly expressed in the roots and are localized to the plasma membrane. Moreover, overexpression of CsLHT1 and CsLHT6 in Arabidopsis significantly improved the uptake of exogenously supplied 15N-glutamate and 15N-glutamine. Taken together, our findings are consistent with the involvement of CsLHT1 and CsLHT6 in amino-acid uptake from the soil, which is particularly important for tea plants grown inorganic tea plantations.

9.
Nat Commun ; 12(1): 4142, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34230469

RESUMO

Potato is the third most important staple food crop. To address challenges associated with global food security, a hybrid potato breeding system, aimed at converting potato from a tuber-propagated tetraploid crop into a seed-propagated diploid crop through crossing inbred lines, is under development. However, given that most diploid potatoes are self-incompatible, this represents a major obstacle which needs to be addressed in order to develop inbred lines. Here, we report on a self-compatible diploid potato, RH89-039-16 (RH), which can efficiently induce a mating transition from self-incompatibility to self-compatibility, when crossed to self-incompatible lines. We identify the S-locusinhibitor (Sli) gene in RH, capable of interacting with multiple allelic variants of the pistil-specific S-ribonucleases (S-RNases). Further, Sli gene functions like a general S-RNase inhibitor, to impart SC to RH and other self-incompatible potatoes. Discovery of Sli now offers a path forward for the diploid hybrid breeding program.


Assuntos
Diploide , Proteínas F-Box/genética , Genes de Plantas , Proteínas de Plantas/genética , Autoincompatibilidade em Angiospermas/genética , Solanum tuberosum/genética , Flores/genética , Filogenia , Melhoramento Vegetal , Plantas Geneticamente Modificadas , Ribonucleases/genética , Sementes
10.
Plant Cell ; 33(2): 306-321, 2021 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-33793793

RESUMO

Unisexual flowers provide a useful system for studying plant sex determination. In cucumber (Cucumis sativus L.), three major Mendelian loci control unisexual flower development, Female (F), androecious [a; 1-aminocyclopropane-1-carboxylate {ACC} synthase 11, acs11], and Monoecious (M; ACS2), referred to here as the Female, Androecious, Monoecious (FAM) model, in combination with two genes, gynoecious (g, the WIP family C2H2 zinc finger transcription factor gene WIP1) and the ethylene biosynthetic gene ACC oxidase 2 (ACO2). The F locus, conferring gynoecy and the potential for increasing fruit yield, is defined by a 30.2-kb tandem duplication containing three genes. However, the gene that determines the Female phenotype, and its mechanism, remains unknown. Here, we created a set of mutants and revealed that ACS1G is responsible for gynoecy conferred by the F locus. The duplication resulted in ACS1G acquiring a new promoter and expression pattern; in plants carrying the F locus duplication, ACS1G is expressed early in floral bud development, where it functions with ACO2 to generate an ethylene burst. The resulting ethylene represses WIP1 and activates ACS2 to initiate gynoecy. This early ACS1G expression bypasses the need for ACS11 to produce ethylene, thereby establishing a dominant pathway for female floral development. Based on these findings, we propose a model for how these ethylene biosynthesis genes cooperate to control unisexual flower development in cucumber.


Assuntos
Cucumis sativus/enzimologia , Cucumis sativus/genética , Flores/enzimologia , Flores/genética , Liases/genética , Sequência de Aminoácidos , Regulação da Expressão Gênica de Plantas , Loci Gênicos , Genoma de Planta , Genótipo , Glucuronidase/metabolismo , Liases/química , Fenótipo , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
11.
J Agric Food Chem ; 69(16): 4795-4803, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33861578

RESUMO

Shading was thought as an effective approach to increase theanine in harvested tea shoots. Previous studies offered conflicting findings, perhaps since the integration of theanine metabolism and transport in different tissues was not considered. Theanine is synthesized primarily in the roots and is then transported, via the vascular system, to new vegetative tissues. Here, we found that theanine increased in the stem, was reduced in the leaf, and remained stable in the roots, under shading conditions. Notably, in tea roots, shading significantly increased ethylamine and activated the theanine biosynthesis pathway and theanine transporter genes. Furthermore, shading significantly increased the expression of theanine transporter genes, CsAAP2/4/5/8, in the stem, while decreasing the expression of CsAAP1/2/4/5/6 in the leaf, in accordance with shading effects on theanine levels in these tissues. These findings reveal that shading of tea plants promotes theanine biosynthesis and allocation in different tissues, processes which appear to involve the theanine biosynthesis pathway enzymes and AAP family of theanine transporters.


Assuntos
Camellia sinensis , Glutamatos , Folhas de Planta , Proteínas de Plantas/genética , Raízes de Plantas/genética , Chá
12.
Nat Plants ; 6(7): 809-822, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32665652

RESUMO

Axillary meristem development determines both plant architecture and crop yield; this critical process is regulated by the PROLIFERATING CELL FACTORS (TCP) family of transcription factors. Although TCP proteins bind primarily to promoter regions, some also target gene bodies for expression activation. However, the underlying regulatory mechanism remains unknown. Here we show that TEN, a TCP from cucumber (Cucumis sativus L.), controls the identity and mobility of tendrils. Through its C terminus, TEN binds at intragenic enhancers of target genes; its N-terminal domain functions as a non-canonical histone acetyltransferase (HAT) to preferentially act on lysine 56 and 122 of the histone H3 globular domain. This HAT activity is responsible for chromatin loosening and host-gene activation. The N termini of all tested CYCLOIDEA and TEOSINTE BRANCHED 1-like TCP proteins contain an intrinsically disordered region; despite their sequence divergence, they have conserved HAT activity. This study identifies a non-canonical class of HATs and provides a mechanism by which modification at the H3 globular domain is integrated with the transcription process.


Assuntos
Histona Acetiltransferases/fisiologia , Proteínas de Plantas/fisiologia , Fatores de Transcrição/fisiologia , Sítios de Ligação , Cucumis sativus/enzimologia , Cucumis sativus/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Genes de Plantas/fisiologia , Histona Acetiltransferases/metabolismo
13.
Mol Plant ; 13(2): 321-335, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31812689

RESUMO

In plants, RNA interference (RNAi) plays a pivotal role in growth and development, and responses to environmental inputs, including pathogen attack. The intercellular and systemic trafficking of small interfering RNA (siRNA)/microRNA (miRNA) is a central component in this regulatory pathway. Currently, little is known with regards to the molecular agents involved in the movement of these si/miRNAs. To address this situation, we employed a biochemical approach to identify and characterize a conserved SMALL RNA-BINDING PROTEIN 1 (SRBP1) family that mediates non-cell-autonomous small RNA (sRNA) trafficking. In Arabidopsis, AtSRBP1 is a glycine-rich (GR) RNA-binding protein, also known as AtGRP7, which we show binds single-stranded siRNA. A viral vector, Zucchini yellow mosaic virus (ZYMV), was employed to functionally characterized the AtSRBP1-4 (AtGRP7/2/4/8) RNA recognition motif and GR domains. Cellular-based studies revealed the GR domain as being necessary and sufficient for SRBP1 cell-to-cell movement. Taken together, our findings provide a foundation for future research into the mechanism and function of mobile sRNA signaling agents in plants.


Assuntos
Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cucurbita/genética , Cucurbita/metabolismo , Cucurbita/virologia , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Potyvirus/genética , Potyvirus/fisiologia , Domínios Proteicos , Motivo de Reconhecimento de RNA , RNA de Plantas/metabolismo , RNA Viral/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética
14.
Plant J ; 101(1): 57-70, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31461558

RESUMO

Theanine, a unique non-proteinogenic amino acid, is an important component of tea, as it confers the umami taste and relaxation effect of tea as a beverage. Theanine is primarily synthesized in tea roots and is subsequently transported to young shoots, which are harvested for tea production. Currently, the mechanism for theanine transport in the tea plant remains unknown. Here, by screening a yeast mutant library, followed by functional analyses, we identified the glutamine permease, GNP1 as a specific transporter for theanine in yeast. Although there is no GNP1 homolog in the tea plant, we assessed the theanine transport ability of nine tea plant amino acid permease (AAP) family members, with six exhibiting transport activity. We further determined that CsAAP1, CsAAP2, CsAAP4, CsAAP5, CsAAP6, and CsAAP8 exhibited moderate theanine affinities and transport was H+ -dependent. The tissue-specific expression of these six CsAAPs in leaves, vascular tissues, and the root suggested their broad roles in theanine loading and unloading from the vascular system, and in targeting to sink tissues. Furthermore, expression of these CsAAPs was shown to be seasonally regulated, coincident with theanine transport within the tea plant. Finally, CsAAP1 expression in the root was highly correlated with root-to-bud transport of theanine, in seven tea plant cultivars. Taken together, these findings support the hypothesis that members of the CsAAP family transport theanine and participate in its root-to-shoot delivery in the tea plant.


Assuntos
Camellia sinensis/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Glutamatos/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo
15.
Nat Commun ; 10(1): 5158, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727887

RESUMO

The botanical family Cucurbitaceae includes a variety of fruit crops with global or local economic importance. How their genomes evolve and the genetic basis of diversity remain largely unexplored. In this study, we sequence the genome of the wax gourd (Benincasa hispida), which bears giant fruit up to 80 cm in length and weighing over 20 kg. Comparative analyses of six cucurbit genomes reveal that the wax gourd genome represents the most ancestral karyotype, with the predicted ancestral genome having 15 proto-chromosomes. We also resequence 146 lines of diverse germplasm and build a variation map consisting of 16 million variations. Combining population genetics and linkage mapping, we identify a number of regions/genes potentially selected during domestication and improvement, some of which likely contribute to the large fruit size in wax gourds. Our analyses of these data help to understand genome evolution and function in cucurbits.


Assuntos
Cucurbitaceae/genética , Variação Genética , Genoma de Planta , Cariótipo , Filogenia , Domesticação , Evolução Molecular , Frutas/anatomia & histologia , Frutas/genética , Genética Populacional , Tamanho do Genoma , Anotação de Sequência Molecular , Tamanho do Órgão/genética
16.
J Integr Plant Biol ; 61(10): 1043-1061, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31127689

RESUMO

The phloem, located within the vascular system, is critical for delivery of nutrients and signaling molecules throughout the plant body. Although the morphological process and several factors regulating phloem differentiation have been reported, the molecular mechanism underlying its initiation remains largely unknown. Here, we report that the small peptide-coding gene, CLAVATA 3 (CLV3)/EMBEYO SURROUNDING REGION 25 (CLE25), the expression of which begins in provascular initial cells of 64-cell-staged embryos, and continues in sieve element-procambium stem cells and phloem lineage cells, during post-embryonic root development, facilitates phloem initiation in Arabidopsis. Knockout of CLE25 led to delayed protophloem formation, and in situ expression of an antagonistic CLE25G6T peptide compromised the fate-determining periclinal division of the sieve element precursor cell and the continuity of the phloem in roots. In stems of CLE25G6T plants the phloem formation was also compromised, and procambial cells were over-accumulated. Genetic and biochemical analyses indicated that a complex, consisting of the CLE-RESISTANT RECEPTOR KINASE (CLERK) leucine-rich repeat (LRR) receptor kinase and the CLV2 LRR receptor-like protein, is involved in perceiving the CLE25 peptide. Similar to CLE25, CLERK was also expressed during early embryogenesis. Taken together, our findings suggest that CLE25 regulates phloem initiation in Arabidopsis through a CLERK-CLV2 receptor complex.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Floema/metabolismo , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Raízes de Plantas/genética , Plantas Geneticamente Modificadas/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
17.
Plant Physiol ; 180(2): 986-997, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30967482

RESUMO

In plants, male sterility is an important agronomic trait, especially in hybrid crop production. Many factors are known to affect crop male sterility, but it remains unclear whether Suc transporters (SUTs) participate directly in this process. Here, we identified and functionally characterized the cucumber (Cucumis sativus) CsSUT1, a typical plasma membrane-localized energy-dependent high-affinity Suc-H+ symporter. CsSUT1 is expressed in male flowers and encodes a protein that is localized primarily in the tapetum, pollen, and companion cells of the phloem of sepals, petals, filaments, and pedicel. The male flowers of CsSUT1-RNA interference (RNAi) lines exhibited a decrease in Suc, hexose, and starch content, relative to those of the wild type, during the later stages of male flower development, a finding that was highly associated with male sterility. Transcriptomic analysis revealed that numerous genes associated with sugar metabolism, transport, and signaling, as well as with auxin signaling, were down-regulated, whereas most myeloblastosis (MYB) transcription factor genes were up-regulated in these CsSUT1-RNAi lines relative to wild type. Our findings demonstrate that male sterility can be induced by RNAi-mediated down-regulation of CsSUT1 expression, through the resultant perturbation in carbohydrate delivery and subsequent alteration in sugar and hormone signaling and up-regulation of specific MYB transcription factors. This knowledge provides a new approach for bioengineering male sterility in crop plants.


Assuntos
Metabolismo dos Carboidratos/genética , Cucumis sativus/genética , Regulação para Baixo , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/metabolismo , Infertilidade das Plantas/genética , Proteínas de Plantas/metabolismo , Membrana Celular/metabolismo , Regulação para Baixo/genética , Genes de Plantas , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Floema/metabolismo , Floema/ultraestrutura , Proteínas de Plantas/genética , Pólen/genética , Pólen/ultraestrutura , Interferência de RNA , Transdução de Sinais , Fatores de Transcrição/metabolismo
18.
J Integr Plant Biol ; 61(4): 492-508, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30171742

RESUMO

In response to phosphate (Pi) deficiency, it has been shown that micro-RNAs (miRNAs) and mRNAs are transported through the phloem for delivery to sink tissues. Growing evidence also indicates that long non-coding RNAs (lncRNAs) are critical regulators of Pi homeostasis in plants. However, whether lncRNAs are present in and move through the phloem, in response to Pi deficiency, remains to be established. Here, using cucumber as a model plant, we show that lncRNAs are enriched in the phloem translocation stream and respond, systemically, to an imposed Pi-stress. A well-known lncRNA, IPS1, the target mimic (TM) of miRNA399, accumulates to a high level in the phloem, but is not responsive to early Pi deficiency. An additional 24 miRNA TMs were also detected in the phloem translocation stream; among them miRNA171 TMs and miR166 TMs were induced in response to an imposed Pi stress. Grafting studies identified 22 lncRNAs which move systemically into developing leaves and root tips. A CU-rich PTB motif was further identified in these mobile lncRNAs. Our findings revealed that lncRNAs respond to Pi deficiency, non-cell-autonomously, and may act as systemic signaling agents to coordinate early Pi deficiency signaling, at the whole-plant level.


Assuntos
Floema/metabolismo , Fosfatos/deficiência , Transporte de RNA , RNA Longo não Codificante/genética , RNA de Plantas/genética , Sequência de Bases , Cucumis sativus/genética , Regulação da Expressão Gênica de Plantas , Motivos de Nucleotídeos/genética , Especificidade de Órgãos/genética , Proteínas de Plantas/metabolismo , RNA Longo não Codificante/metabolismo , RNA de Plantas/metabolismo , Regulação para Cima/genética
19.
Curr Opin Biotechnol ; 49: 1-9, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28732264

RESUMO

Phosphorus (P) is a macronutrient essential for plant growth, therefore, soil P level is critical to crop yield potential in agriculture. As Pi levels limit crop yield under many soil conditions, it is crucial to understand the mechanisms by which plants adapt to low-phosphate (Pi) soil conditions and interact with their soil microbiome to improve crop P use efficiency, in order to ensure global food security. Recent advances have been made towards achieving this goal through advancing our understanding of the plant's response to limiting Pi conditions to maintain P homeostasis. In this review, we assess advances made in local and systemic Pi sensing and signaling, and in the molecular events for Pi absorption, redistribution and plant-symbiont interactions. These findings offer important avenues for bio-engineering of agricultural crops with traits for enhanced Pi acquisition and utilization.


Assuntos
Fosfatos/metabolismo , Plantas/metabolismo , Transdução de Sinais , Homeostase , Microbiota , Raízes de Plantas/metabolismo
20.
Mol Plant ; 10(10): 1293-1306, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-28917590

RESUMO

The Cucurbita genus contains several economically important species in the Cucurbitaceae family. Here, we report high-quality genome sequences of C. maxima and C. moschata and provide evidence supporting an allotetraploidization event in Cucurbita. We are able to partition the genome into two homoeologous subgenomes based on different genetic distances to melon, cucumber, and watermelon in the Benincaseae tribe. We estimate that the two diploid progenitors successively diverged from Benincaseae around 31 and 26 million years ago (Mya), respectively, and the allotetraploidization happened at some point between 26 Mya and 3 Mya, the estimated date when C. maxima and C. moschata diverged. The subgenomes have largely maintained the chromosome structures of their diploid progenitors. Such long-term karyotype stability after polyploidization has not been commonly observed in plant polyploids. The two subgenomes have retained similar numbers of genes, and neither subgenome is globally dominant in gene expression. Allele-specific expression analysis in the C. maxima × C. moschata interspecific F1 hybrid and their two parents indicates the predominance of trans-regulatory effects underlying expression divergence of the parents, and detects transgressive gene expression changes in the hybrid correlated with heterosis in important agronomic traits. Our study provides insights into polyploid genome evolution and valuable resources for genetic improvement of cucurbit crops.


Assuntos
Instabilidade Cromossômica , Cromossomos de Plantas , Cucurbita/genética , Evolução Molecular , Genoma de Planta , Cariótipo , Tetraploidia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA