Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
2.
Int J Mol Sci ; 23(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36233098

RESUMO

Streptococcus gallolyticus subspecies gallolyticus, known as Streptococcus bovis biotype I, is a facultative pathogen causing bacteraemia, infective endocarditis and sepsis that has been linked with colorectal cancer (CRC), but this correlation is still unclear. Bacterial surface structures, such as the major sugar antigens exposed to the outside of the microorganism, are potential virulence factors. One of the primary sugar antigens loosely attached to the cell surface is the biofilm component, exopolysaccharide (EPS). EPSs of S. bovis are poorly characterized molecules. Until now, only one S. macedonicus Sc136 EPS structure was known to the entire S. bovis group. The S. gallolyticus DSM 13808 EPS was investigated by chemical analysis, mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy. The hexasaccharide repeating unit of the EPS, containing four Glc, two Rha residues and one phosphate group, has been described " →6)-α-d-Glcp-(1→3)-ß-l-Rhap-(1→4)-ß-d-Glcp-(1→3)-[ß-d-Glcp-(1→2)]-α-l-Rhap-(1→2)-α-d-Glcp-(1→P→".


Assuntos
Bacteriemia , Infecções Estreptocócicas , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Fosfatos , Infecções Estreptocócicas/microbiologia , Açúcares , Fatores de Virulência
3.
Vaccines (Basel) ; 9(6)2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34199173

RESUMO

Glycoproteins are processed endosomally prior to presentation to T cells and subsequent induction of specific antibodies. The sugar part of glycoconjugate may be degraded while the type of the process depends on the features of the particular structure. The generated carbohydrate epitopes may differ from native structures and influence immunogenicity of the antigens. We have devised a model of endosomal-like pre-processing of Bordetella pertussis 186 oligosaccharides (OSs) to verify how it affects the immunogenicity of their conjugates. The glycoconjugates of structurally defined forms of the dodecasaccharide OS were synthesized and their immunogenicity was assessed using immunochemical methods. The structural features of the oligosaccharides and their sensitivity to deamination were analyzed by NMR spectroscopy. The distal trisaccharide-comprising pentasaccharide conjugated to a protein was the most effective in inducing immune response against the B. pertussis 186 LOS and the immune response to the complete OS conjugates was significantly lower. This could be explained by the loss of the distal trisaccharide during the in-cell deamination process suggesting that the native structure is not optimal for a vaccine antigen. Consequently, our research has shown that designing of new glycoconjugate vaccines requires the antigen structures to be verified in context of possible endosomal reactions beforehand.

4.
Int J Mol Sci ; 22(2)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445776

RESUMO

Enterobacterial common antigen (ECA) is a conserved antigen expressed by enterobacteria. It is built by trisaccharide repeating units: →3)-α-D-Fucp4NAc-(1→4)-ß-D-ManpNAcA-(1→4)-α-D-GlcpNAc-(1→ and occurs in three forms: as surface-bound linear polysaccharides linked to a phosphoglyceride (ECAPG) or lipopolysaccharide - endotoxin (ECALPS), and cyclic form (ECACYC). ECA maintains, outer membrane integrity, immunogenicity, and viability of enterobacteria. A supernatant obtained after LPS ultracentrifugation was reported as a source for ECA isolation, but it has never been assessed for detailed composition besides ECACYC. We used mild acid hydrolysis and gel filtration, or zwitterionic-hydrophilic interaction liquid (ZIC®HILIC) chromatography combined with mass spectrometry for purification, fractionation, and structural analysis of rough Shigella sonnei and Escherichia coli R1 and K12 crude LPS preparations. Presented work is the first report concerning complex characteristic of all ECA forms present in LPS-derived supernatants. We demonstrated high heterogeneity of the supernatant-derived ECA that contaminate LPS purified by ultracentrifugation. Not only previously reported O-acetylated tetrameric, pentameric, and hexameric ECACYC have been identified, but also devoid of lipid moiety linear ECA built from 7 to 11 repeating units. Described results were common for all selected strains. The origin of linear ECA is discussed against the current knowledge about ECAPG and ECALPS.


Assuntos
Antígenos de Bactérias/química , Enterobacteriaceae/química , Lipopolissacarídeos/química , Cromatografia/métodos , Fibras na Dieta , Endotoxinas/química , Escherichia coli/química , Hidrólise , Espectrometria de Massas/métodos , Polissacarídeos/química , Shigella sonnei/química
5.
Int J Mol Sci ; 21(18)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32947917

RESUMO

Plesiomonas shigelloides is a Gram-negative, rod-shaped bacterium which causes foodborne intestinal infections, including gastroenteritis. It is one of the most frequent causes of travellers' diarrhoea. Lipopolysaccharide (LPS, endotoxin), an important virulence factor of the species, is in most cases characterised by a smooth character, demonstrated by the presence of all regions, such as lipid A, core oligosaccharide, and O-specific polysaccharide, where the latter part determines O-serotype. P. shigelloides LPS is still a poorly characterised virulence factor considering a "translation" of the particular O-serotype into chemical structure. To date, LPS structure has only been elucidated for 15 strains out of 102 O-serotypes. Structures of the new O-specific polysaccharide and core oligosaccharide of P. shigelloides from the Czechoslovak National Collection of Type Cultures CNCTC 90/89 LPS (O22), investigated by chemical analysis, mass spectrometry, and 1H,13C nuclear magnetic resonance (NMR) spectroscopy, have now been reported. The pentasaccharide repeating unit of the O-specific polysaccharide is built of one d-QuipNAc and is rich in four d-GalpNAcAN residues. Moreover, the new core oligosaccharide shares common features of other P. shigelloides endotoxins, i.e., the lack of phosphate groups and the presence of uronic acids.


Assuntos
Lipopolissacarídeos/química , Antígenos O/química , Plesiomonas/química , Sequência de Carboidratos , Lipopolissacarídeos/isolamento & purificação , Ressonância Magnética Nuclear Biomolecular , Antígenos O/isolamento & purificação , Oligossacarídeos/química , Oligossacarídeos/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
6.
Int J Mol Sci ; 21(17)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32839412

RESUMO

Enterobacterial common antigen (ECA) is a conserved surface antigen characteristic for Enterobacteriaceae. It is consisting of trisaccharide repeating unit, →3)-α-d-Fucp4NAc-(1→4)-ß-d-ManpNAcA-(1→4)-α-d-GlcpNAc-(1→, where prevailing forms include ECA linked to phosphatidylglycerol (ECAPG) and cyclic ECA (ECACYC). Lipopolysaccharide (LPS)-associated form (ECALPS) has been proved to date only for rough Shigella sonnei phase II. Depending on the structure organization, ECA constitutes surface antigen (ECAPG and ECALPS) or maintains the outer membrane permeability barrier (ECACYC). The existence of LPS was hypothesized in the 1960-80s on the basis of serological observations. Only a few Escherichia coli strains (i.e., R1, R2, R3, R4, and K-12) have led to the generation of anti-ECA antibodies upon immunization, excluding ECAPG as an immunogen and conjecturing ECALPS as the only immunogenic form. Here, we presented a structural survey of ECALPS in E. coli R1, R2, R3, and R4 to correlate previous serological observations with the presence of ECALPS. The low yields of ECALPS were identified in the R1, R2, and R4 strains, where ECA occupied outer core residues of LPS that used to be substituted by O-specific polysaccharide in the case of smooth LPS. Previously published observations and hypotheses regarding the immunogenicity and biosynthesis of ECALPS were discussed and correlated with presented herein structural data.


Assuntos
Antígenos de Bactérias/química , Membrana Celular/química , Escherichia coli/química , Lipopolissacarídeos/química , Antígenos de Bactérias/isolamento & purificação , Sequência de Carboidratos , Escherichia coli/classificação , Lipopolissacarídeos/isolamento & purificação , Fosfatidilgliceróis/química , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
7.
Oncol Rep ; 43(1): 270-281, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31746432

RESUMO

Lipopolysaccharides are the main surface antigens and virulence factors of gram­negative bacteria. Removal of four ester­bound fatty acid residues from hexaacyl lipid A of Escherichia coli lipooligosaccharide (LOS) resulted in the de­O­acylated derivative E. coli LOS­OH (LOS­OH). This procedure caused a significant reduction in the toxicity of this compound compared to the native molecule. We investigated the effect of such a structural LOS modification on its biological activity using in vitro assays with monocytic cells of the RAW264.7 line, dendritic cells of the JAWS II line, bone marrow­derived dendritic cells (BM­DCs), and spleen cells. Furthermore, in in vivo experiments with a melanoma B16 metastasis model, the anti­metastatic activity of the compounds and spleen cell reactivity mediated by them representing a systemic response were analyzed. The results revealed that LOS­OH demonstrated weaker ability than LOS to stimulate and polarize an immune response both in vitro and in vivo. It induced lower cytokine production by cells of myeloid lines. Multiple applications of LOS­OH into mice injected intravenously with B16 cells significantly (P<0.05; P<0.01) reduced the number of metastatic foci in the lungs, presumably via silencing of myeloid cell reactivity as well as the inability to stimulate lymphoid cells both directly and indirectly. These findings suggest that LOS­OH maintained in the body of metastasis­bearing mice appears to modulate or downregulate the innate response, leading to the inability of blood myeloid cells to support the migration of melanoma cells to lung tissue.


Assuntos
Escherichia coli/metabolismo , Lipídeo A/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , Melanoma Experimental/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Proteínas de Escherichia coli/administração & dosagem , Proteínas de Escherichia coli/farmacologia , Feminino , Humanos , Injeções Intravenosas , Lipídeo A/química , Lipídeo A/farmacologia , Neoplasias Pulmonares/imunologia , Melanoma Experimental/imunologia , Camundongos , Células RAW 264.7 , Evasão Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Front Immunol ; 9: 1498, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30008719

RESUMO

Lipopolysaccharide (LPS, endotoxin), the main surface antigen and virulence factor of Gram-negative bacteria, is composed of lipid A, core oligosaccharide, and O-specific polysaccharide (O-PS) regions. Each LPS region is capable of complement activation. We have demonstrated that LPS of Hafnia alvei, an opportunistic human pathogen, reacts strongly with human and murine mannose-binding lectins (MBLs). Moreover, MBL-LPS interactions were detected for the majority of other Gram-negative species investigated. H. alvei was used as a model pathogen to investigate the biological consequences of these interactions. The core oligosaccharide region of H. alvei LPS was identified as the main target for human and murine MBL, especially l-glycero-d-manno-heptose (Hep) and N-acetyl-d-glucosamine (GlcNAc) residues within the outer core region. MBL-binding motifs of LPS are accessible to MBL on the surface of bacterial cells and LPS aggregates. Generally, the accessibility of outer core structures for interaction with MBL is highest during the lag phase of bacterial growth. The LPS core oligosaccharide-MBL interactions led to complement activation and also induced an anaphylactoid shock in mice. Unlike Klebsiella pneumoniae O3 LPS, robust lectin pathway activation of H. alvei LPS in vivo was mainly the result of outer core recognition by MBL; involvement of the O-PS is not necessary for anaphylactoid shock induction. Our results contribute to a better understanding of MBL-LPS interaction and may support development of therapeutic strategies against sepsis based on complement inhibition.

11.
Int J Mol Sci ; 19(3)2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29495556

RESUMO

The new type of core oligosaccharide in Proteus penneri 40A and 41 lipopolysaccharides has been investigated by ¹H and 13C NMR spectroscopy, electrospray ionization mass spectrometry and chemical methods. Core oligosaccharides of both strains were chosen for structural analysis based on the reactivity of LPSs with serum against P. penneri 40A core oligosaccharide-diphtheria toxoid conjugate. Structural analyses revealed that P. penneri 40A and 41 LPSs possess an identical core oligosaccharide.


Assuntos
Antígenos de Bactérias/química , Lipopolissacarídeos/química , Oligossacarídeos/química , Proteus penneri/química , Antígenos de Bactérias/imunologia , Soros Imunes/imunologia , Lipopolissacarídeos/imunologia , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Oligossacarídeos/imunologia , Proteus penneri/imunologia , Espectrometria de Massas por Ionização por Electrospray , Relação Estrutura-Atividade
12.
Med Microbiol Immunol ; 207(2): 129-139, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29330591

RESUMO

The impact of planktonic and biofilm lifestyles of the clinical isolate Proteus mirabilis 9B-m on its lipopolysaccharide (O-polysaccharide, core region, and lipid A) was evaluated. Proteus mirabilis bacteria are able to form biofilm and lipopolysaccharide is one of the factors involved in the biofilm formation. Lipopolysaccharide was isolated from planktonic and biofilm cells of the investigated strain and analyzed by SDS-PAGE with silver staining, Western blotting and ELISA, as well as NMR and matrix-assisted laser desorption ionization time-of-flight mass spectrometry techniques. Chemical and NMR spectroscopic analyses revealed that the structure of the O-polysaccharide of P. mirabilis 9B-m strain did not depend on the form of cell growth, but the full-length chains of the O-antigen were reduced when bacteria grew in biofilm. The study also revealed structural modifications of the core region in the lipopolysaccharide of biofilm-associated cells-peaks assigned to compounds absent in cells from the planktonic culture and not previously detected in any of the known Proteus core oligosaccharides. No differences in the lipid A structure were observed. In summary, our study demonstrated for the first time that changes in the lifestyle of P. mirabilis bacteria leads to the modifications of their important virulence factor-lipopolysaccharide.


Assuntos
Biofilmes/crescimento & desenvolvimento , Lipopolissacarídeos/análise , Proteus mirabilis/química , Proteus mirabilis/crescimento & desenvolvimento , Western Blotting , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Humanos , Lipopolissacarídeos/isolamento & purificação , Espectroscopia de Ressonância Magnética , Infecções por Proteus/microbiologia , Proteus mirabilis/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Coloração e Rotulagem
13.
Int J Mol Sci ; 18(6)2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28561753

RESUMO

The chemical structure and genomics of the lipopolysaccharide (LPS) core oligosaccharide of pathogenic Edwardsiella tarda strain EIB 202 were studied for the first time. The complete gene assignment for all LPS core biosynthesis gene functions was acquired. The complete structure of core oligosaccharide was investigated by ¹H and 13C nuclear magnetic resonance (NMR) spectroscopy, electrospray ionization mass spectrometry MSn, and matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry. The following structure of the undecasaccharide was established: The heterogeneous appearance of the core oligosaccharide structure was due to the partial lack of ß-d-Galp and the replacement of α-d-GlcpNAcGly by α-d-GlcpNGly. The glycine location was identified by mass spectrometry.


Assuntos
Edwardsiella tarda/química , Lipopolissacarídeos/química , Oligossacarídeos/química , Sequência de Carboidratos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
14.
Front Immunol ; 8: 1741, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29321776

RESUMO

Plesiomonas shigelloides is a Gram-negative bacterium that is associated with diarrheal disease in humans. Lipopolysaccharide (LPS) is the main surface antigen and virulence factor of this bacterium. The lipid A (LA) moiety of LPS is the main region recognized by target cells of immune system. Here, we evaluated the biological activities of P. shigelloides LA for their abilities to induce the productions of proinflammatory cytokines (TNF-α, IL-1ß, and IL-6) by human and murine macrophages [THP-1 macrophages and immortalized murine bone marrow-derived macrophages (iBMDM)]. Four native P. shigelloides LA preparations differing in their phosphoethanolamine (PEtn) substitution, length, number, and saturation of fatty acids were compared with Escherichia coli O55 LA. The bisphosphorylated, hexaacylated, and asymmetric forms of the P. shigelloides and E. coli LA molecules had similar activities in human and murine macrophages, indicating that shortening of the acyl chains in P. shigelloides LA had no effect on its in vitro activities. The PEtn decoration also had no impact on the interaction with the toll-like receptor 4/MD-2 receptor complex. The heptaacylated form of P. shigelloides LA decorated with 16:0 exhibited strong effect on proinflammatory activity, significantly decreasing the levels of all tested cytokines in both murine and human macrophages. Our results revealed that despite the presence of shorter acyl chains and an unsaturated acyl residue (16:1), the bisphosphorylated, hexaacylated, and asymmetric forms of P. shigelloides LA represent highly immunostimulatory structures.

15.
Carbohydr Res ; 434: 1-5, 2016 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-27494421

RESUMO

The structure of the repeating unit of O-antigen of Plesiomonas shigelloides serotype O36 has been investigated by 1H and 13C NMR spectroscopy, matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry and chemical methods. The new structure of trisaccharide has been established: [Formula: see text] These trisaccharide O-antigen units substitute the core undecasaccharide at C-4 of the ß-D-GlcpNAc residue. The core oligosaccharide and lipid A are identical with these of the serotype O17 (PCM 2231) (Maciejewska, A., Lukasiewicz, J., Kaszowska, M., Jachymek, W., Man-Kupisinska, A.; Lugowski, C. Mar. Drugs.2013, 11 (2), 440-454; Lukasiewicz, J., Dzieciatkowska, M., Niedziela, T., Jachymek, W., Augustyniuk, A., Kenne, L., Lugowski, C. Biochemistry, 2006, 45, 10434-10447).


Assuntos
Antígenos O/química , Plesiomonas/genética , Sequência de Carboidratos , Espectroscopia de Ressonância Magnética , Antígenos O/genética , Plesiomonas/química , Plesiomonas/imunologia , Plesiomonas/metabolismo , Sorogrupo
16.
PLoS One ; 11(5): e0156691, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27232184

RESUMO

Despite recombinant protein technology development, proteins isolated from natural sources remain important for structure and activity determination. Ficolins represent a class of proteins that are difficult to isolate. To date, three methods for purifying ficolin-3 from plasma/serum have been proposed, defined by most critical step: (i) hydroxyapatite absorption chromatography (ii) N-acetylated human serum albumin affinity chromatography and (iii) anti-ficolin-3 monoclonal antibody-based affinity chromatography. We present a new protocol for purifying ficolin-3 complexes from human plasma that is based on an exclusive ligand: the O-specific polysaccharide of Hafnia alvei PCM 1200 LPS (O-PS 1200). The protocol includes (i) poly(ethylene glycol) precipitation; (ii) yeast and l-fucose incubation, for depletion of mannose-binding lectin; (iii) affinity chromatography using O-PS 1200-Sepharose; (iv) size-exclusion chromatography. Application of this protocol yielded average 2.2 mg of ficolin-3 preparation free of mannose-binding lectin (MBL), ficolin-1 and -2 from 500 ml of plasma. The protein was complexed with MBL-associated serine proteases (MASPs) and was able to activate the complement in vitro. In-process monitoring of MBL, ficolins, and total protein content revealed the presence of difficult-to-remove immunoglobulin G, M and A, in some extent in agreement with recent findings suggesting crosstalk between IgG and ficolin-3. We demonstrated that recombinant ficolin-3 interacts with IgG and IgM in a concentration-dependent manner. Although this association does not appear to influence ficolin-3-ligand interactions in vitro, it may have numerous consequences in vivo. Thus our purification procedure provides Ig-ficolin-3/MASP complexes that might be useful for gaining further insight into the crosstalk and biological activity of ficolin-3.


Assuntos
Fracionamento Químico/métodos , Imunoglobulinas/metabolismo , Lectinas/isolamento & purificação , Lectinas/metabolismo , Colectinas/metabolismo , Humanos , Imunidade Inata , Lectinas/sangue , Ligantes , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de Complemento/metabolismo , Trombina/metabolismo , Ficolinas
17.
PLoS One ; 11(5): e0155115, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27171009

RESUMO

Hafnia alvei is a facultative and rod-shaped gram-negative bacterium that belongs to the Enterobacteriaceae family. Although it has been more than 50 years since the genus was identified, very little is known about variations among Hafnia species. Diversity in O-antigens (O-polysaccharide, OPS) is thought to be a major factor in bacterial adaptation to different hosts and situations and variability in the environment. Antigenic variation is also an important factor in pathogenicity that has been used to define clones within a number of species. The genes that are required to synthesize OPS are always clustered within the bacterial chromosome. A serotyping scheme including 39 O-serotypes has been proposed for H. alvei, but it has not been correlated with known OPS structures, and no previous report has described the genetic features of OPS. In this study, we obtained the genome sequences of 21 H. alvei strains (as defined by previous immunochemical studies) with different lipopolysaccharides. This is the first study to show that the O-antigen gene cluster in H. alvei is located between mpo and gnd in the chromosome. All 21 of the OPS gene clusters contain both the wzx gene and the wzy gene and display a large number of polymorphisms. We developed an O serotype-specific wzy-based suspension array to detect all 21 of the distinct OPS forms we identified in H. alvei. To the best of our knowledge, this is the first report to identify the genetic features of H. alvei antigenic variation and to develop a molecular technique to identify and classify different serotypes.


Assuntos
Variação Genética , Hafnia alvei/classificação , Hafnia alvei/genética , Antígenos O/genética , Sorotipagem/métodos , Vias Biossintéticas , DNA Bacteriano/genética , Genoma Bacteriano , Hafnia alvei/imunologia , Família Multigênica , Antígenos O/química , Filogenia , Reação em Cadeia da Polimerase , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
Carbohydr Res ; 427: 29-37, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27085741

RESUMO

Lipopolysaccharide (LPS, endotoxin) is a main surface antigen and virulence factor of Gram-negative bacteria. Regardless of the source of LPS, this molecule, isolated from the smooth forms of bacteria, is characterised by a general structural layout encompassing three regions: (i) an O-specific polysaccharide (O-PS) - a polymer of repeating oligosaccharide units, (ii) core oligosaccharide (OS), and (iii) the lipid A anchoring LPS in the outer membrane of the cell envelope of Gram-negative bacteria. Structural analysis usually requires degradation of LPS and further efficient separation of various poly- and oligosaccharide glycoforms. The hydrophilic interaction liquid chromatography (HILIC) was shown as an efficient technique for separation of labelled or native neutral and acidic glycans, glycopeptides, sialylated glycans, glycosylated and nonglycosylated peptides. Herein we adopted ZIC(®) (zwitterionic stationary phase covalently attached to porous silica)-HILIC technology in combination with electrospray ionisation mass spectrometry to separate different LPS-derived oligosaccharides. As a result three effective procedures have been developed: (i) to separate different core oligosaccharides of Escherichia coli R1 LOS, (ii) to separate RU-[Hep]-Kdo oligosaccharides from core OS glycoforms of Hafnia alvei PCM 1200 LPS, and (iii) to separate Hep and Kdo-containing mono, di-, tri- and tetrasaccharides of H. alvei PCM 1200 LPS. Moreover, some of developed analytical procedures were scaled to semi-preparative protocols and used to obtain highly-purified fractions of the interest in larger quantities required for future evaluation, analysis, and biological applications.


Assuntos
Cromatografia Líquida/métodos , Bactérias Gram-Negativas/metabolismo , Oligossacarídeos/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray/métodos , Proteínas de Bactérias/análise , Fracionamento Químico , Escherichia coli/metabolismo , Hafnia alvei/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Lipopolissacarídeos/análise
19.
Postepy Hig Med Dosw (Online) ; 69: 1003-12, 2015 Sep 08.
Artigo em Polonês | MEDLINE | ID: mdl-26400887

RESUMO

The enterobacterial common antigen (ECA) is a carbohydrate-derived cell surface antigen present in all Gram-negative bacteria belonging to Enterobacteriaceae family. Biosynthetic pathways shared by ECA and LPS (endotoxin) suggest close connections between these antigens. ECA occurs in three different forms: a phosphatidyl-linked linear polysaccharide anchored on the cell surface (ECAPG), a cyclic form built of 4-6 repeating units localized in the periplasm (ECACYC) and as a linear polysaccharide covalently linked to LPS core oligosaccharide (ECALPS). Regardless of ECA form, poly- and oligosaccharides of ECA consist of the biological trisaccharide repeating units: →3)-α-d-Fucp4NAc-(1→4)-ß-d-ManpNAcA-(1→4)-α-d-GlcpNAc-(1→, where Fucp4NAc refers to 4-acetamido-2,4-dideoxygalactose, ManpNAcA to N-acetyl-mannosaminuronic acid and GlcpNAc to N-acetylglucosamine. ECAPG and ECALPS consisting of one unit with Fucp4NAc as a terminal sugar were also identified. The number of the studies shows its occurrence in all members of enteric bacteria with a few exceptions such as Erwinia chrysanthemi. The presence of ECA was also shown for such genera as Plesiomonas [4] and Yersinia [36], previously belonging to the Vibrionaceae and Pasteurellaceae families, respectively. It was one of the reasons to include these two taxa in the Enterobacteriaceae family. The function of ECA is not fully understood, but it was reported that its occurrence is important in resistance of bacterial cells to environmental conditions, such as bile salts in the human digestive tract. The immunogenicity of ECA seems very interesting in the fact that only sparse rough Gram-negative strains, such as Shigella sonnei phase II, Escherichia coli R1, R2, R4, K-12, and Yersinia enterocolitica O:3 are able to induce the production of specific anti-ECA antibodies. It is the effect of the ECALPS, and the evidence for the existence of such covalent linkage was provided by structural analysis of S. sonnei surface antigens.


Assuntos
Antígenos de Bactérias/química , Antígenos de Bactérias/imunologia , Enterobacteriaceae/química , Enterobacteriaceae/imunologia , Sequência de Carboidratos , Humanos , Estrutura Molecular
20.
Postepy Hig Med Dosw (Online) ; 69: 1013-30, 2015 Sep 08.
Artigo em Polonês | MEDLINE | ID: mdl-26400888

RESUMO

Pertussis is a contagious respiratory tract disease caused by the Gram-negative bacterium Bordetella pertussis. Despite widespread vaccination, in recent years the pertussis incidence has increased. The whole-cell pertussis vaccine has been very effective but reactogenic. Therefore the improved vaccines contain only a few isolated and inactivated antigens of B. pertussis. However, a waning of the acellular vaccine-induced immunity indicates that these vaccines lack some important protective B. pertussis antigens. The vaccine containing an inactivated pertussis toxin induces the production of toxin-neutralizing antibodies, but it does not lead to destruction of bacteria. Since many virulence factors are involved in the pathogenesis of pertussis, beside the toxin-neutralizing activity, the direct bactericidal activity is essential in anti-pertussis immunity. Lipooligosaccharide is the main surface component of B. pertussis. It is a target for bactericidal antibodies during natural infection. The endotoxic activity of LOS makes it unacceptable for acellular vaccines against B. pertussis. However, the non-toxic moiety of the B. pertussis LOS-derived oligosaccharide coupled to a carrier protein forms an immunogenic glycoconjugate which has a potential application as a new component of a pertussis vaccine. In this paper, we present a review of current research and reasons for the increased pertussis incidence. The epidemiologic situation of pertussis in the past decades showing the ineffectiveness of contemporary, acellular pertussis vaccines is also discussed. The immune processes elicited by natural infection with B. pertussis were compared to the vaccine-induced immunity. The important role of bactericidal antibodies against lipooligosaccharide was indicated in effective immune defense. In a number of research papers the immunogenicity and protective properties of glycoconjugates containing the oligosaccharide component of B. pertussis have been described, and its application as a new component of a pertussis vaccine have been implied.


Assuntos
Anticorpos Antibacterianos/isolamento & purificação , Bordetella pertussis/efeitos dos fármacos , Lipopolissacarídeos/isolamento & purificação , Vacina contra Coqueluche/química , Vacina contra Coqueluche/farmacologia , Coqueluche/prevenção & controle , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA