Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Life Sci ; 335: 122285, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37995934

RESUMO

AIMS: The goal of this study was to identify mediators in peri-lymphatic adipose tissue (PLAT) that are altered in obese versus lean Zucker rats, with focus on potential sex differences MAIN METHODS: Mesenteric PLAT was analyzed with protein and lncRNA arrays. Additional RT-PCR confirmation was performed with epididymal/ovarian fat. KEY FINDINGS: MCP-1, TCK-1, Galectin-1, Galectin-3, and neuropilin-1 were elevated in PLAT from obese rats of both sexes. However, 11 additional proteins were elevated only in obese males while 24 different proteins were elevated in obese females. Profiling of lncRNAs revealed lean males have elevated levels of NEAT1, MALAT1 and GAS5 compared to lean females. NEAT1, MALAT1, and GAS5 were significantly reduced with obesity in males but not in females. Another lncRNA, HOTAIR, was higher in lean females compared to males, and its levels in females were reduced with obesity. Obese rats of both sexes had similar histologic findings of mesenteric macrophage crown-like structures and hepatocyte fat accumulation. SIGNIFICANCE: While obese male and female Zucker rats both have increased inflammation, they have distinct signals. Future studies of the proteome and lncRNA landscape of obese males vs. females in various animal models and in human subjects are warranted to better guide development of therapeutics for obesity-induced inflammation.


Assuntos
RNA Longo não Codificante , Feminino , Masculino , Ratos , Humanos , Animais , RNA Longo não Codificante/genética , Ratos Zucker , Obesidade/genética , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Inflamação/genética , Inflamação/metabolismo , Mediadores da Inflamação
2.
Int J Mol Sci ; 24(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37762628

RESUMO

Type 2 diabetes mellitus is a chronic metabolic disease with no cure. Adipose tissue is a major site of systemic insulin resistance. Sortilin is a central component of the glucose transporter -Glut4 storage vesicles (GSV) which translocate to the plasma membrane to uptake glucose from circulation. Here, using human adipocytes we demonstrate the presence of the alternatively spliced, truncated sortilin variant (Sort_T) whose expression is significantly increased in diabetic adipose tissue. Artificial-intelligence-based modeling, molecular dynamics, intrinsically disordered region analysis, and co-immunoprecipitation demonstrated association of Sort_T with Glut4 and decreased glucose uptake in adipocytes. The results show that glucagon-like peptide-1 (GLP1) hormone decreases Sort_T. We deciphered the molecular mechanism underlying GLP1 regulation of alternative splicing of human sortilin. Using splicing minigenes and RNA-immunoprecipitation assays, the results show that GLP1 regulates Sort_T alternative splicing via the splice factor, TRA2B. We demonstrate that targeted antisense oligonucleotide morpholinos reduces Sort_T levels and improves glucose uptake in diabetic adipocytes. Thus, we demonstrate that GLP1 regulates alternative splicing of sortilin in human diabetic adipocytes.


Assuntos
Processamento Alternativo , Diabetes Mellitus Tipo 2 , Humanos , Adipócitos , Peptídeo 1 Semelhante ao Glucagon/genética , Glucose
3.
Sci Rep ; 13(1): 317, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609440

RESUMO

Shifts in normal aging set stage for neurodegeneration and dementia affecting 1 in 10 adults. The study demonstrates that lncRNA GAS5 is decreased in aged and Alzheimer's disease brain. The role and targets of lncRNA GAS5 in the aging brain were elucidated using a GAS5-targeting small molecule NPC86, a frontier in lncRNA-targeting therapeutic. Robust techniques such as molecular dynamics simulation of NPC86 binding to GAS5, in vitro functional assays demonstrating that GAS5 regulates insulin signaling, neuronal survival, phosphorylation of tau, and neuroinflammation via toll-like receptors support the role of GAS5 in maintaining healthy neurons. The study demonstrates the safety and efficacy of intranasal NPC86 treatment in aged mice to improve cellular functions with transcriptomic analysis in response to NPC86. In summary, the study demonstrates that GAS5 contributes to pathways associated with neurodegeneration and NPC86 has tremendous therapeutic potential to prevent the advent of neurodegenerative diseases and dementias.


Assuntos
MicroRNAs , RNA Longo não Codificante , Camundongos , Animais , Insulina/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Doenças Neuroinflamatórias , Transdução de Sinais , Modelos Animais de Doenças , Neurônios/metabolismo , MicroRNAs/genética
4.
FASEB Bioadv ; 4(4): 235-253, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35415459

RESUMO

Ovarian cancer is the deadliest malignant disease in women. Protein Kinase C delta (PRKCD; PKCδ) is serine/threonine kinase extensively linked to various cancers. In humans, PKCδ is alternatively spliced to PKCδI and PKCδVIII. However, the specific function of PKCδ splice variants in ovarian cancer has not been elucidated yet. Hence, we evaluated their expression in human ovarian cancer cell lines (OCC): SKOV3 and TOV112D, along with the normal T80 ovarian cells. Our results demonstrate a marked increase in PKCδVIII in OCC compared to normal ovarian cells. Therefore, we elucidated the role of PKCδVIII and the underlying mechanism of its expression in OCC. Using overexpression and knockdown studies, we demonstrate that PKCδVIII increases cellular survival and migration in OCC. Further, overexpression of PKCδVIII in T80 cells resulted in increased expression of Bcl2 and knockdown of PKCδVIII in OCC decreased Bcl2 expression. Using co-immunoprecipitations and immunocytochemistry, we demonstrate nuclear localization of PKCδVIII in OCC and further show increased association of PKCδVIII with Bcl2 and Bcl-xL in OCC. Using PKCδ splicing minigene, mutagenesis, siRNA and antisense oligonucleotides, we demonstrate that increased levels of alternatively spliced PKCδVIII in OCC is regulated by splice factor SRSF2. Finally, we verified that PKCδVIII levels are elevated in samples of human ovarian cancer tissue. The data presented here demonstrate that the alternatively spliced, signaling kinase PKCδVIII is a viable target to develop therapeutics to combat progression of ovarian cancer.

5.
Biology (Basel) ; 11(3)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35336800

RESUMO

Chronic recalcitrant wounds result from delayed or slowed healing processes. Underlying inflammation is a substantial risk factor for impaired dermal wound healing and often leads to chronic wound-related sequelae. Human adipose stem cells (hASCs) have shown tremendous potential in regenerative medicine. The goal of this project was to improve the outcome of chronic wounds by harvesting the exosomes from hASCs for therapeutic intervention. The results demonstrate that long noncoding RNA GAS5 is highly enriched in hASC exosomes and, further, that GAS5 is central to promoting wound repair in vitro. To evaluate the outcome of wound healing in a chronic low-grade inflammatory environment, lipopolysaccharide-treated HDF cells were evaluated for their response to hASC exosome treatment. Ingenuity pathway analysis identified inflammation pathways and genes affected by exosomes in a GAS5-dependent manner. Using siRNA to deplete GAS5 in HDF, the results demonstrated that Toll-like receptor 7 (TLR7) expression levels were regulated by GAS5. Importantly, the results demonstrate that GAS5 regulates inflammatory pathway genes in a chronic inflammation environment. The results presented here demonstrate that hASC exosomes are a viable therapeutic that accelerate the healing of chronic recalcitrant wounds.

6.
Neurochem Int ; 150: 105173, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34453976

RESUMO

The neuroprotective role of human adipose-derived stems cells (hASCs) has raised great interest in regenerative medicine due to their ability to modulate their surrounding environment. Our group has demonstrated that exosomes derived from hASC (hASCexo) are a cell-free regenerative approach to long term recovery following traumatic brain injury (TBI). Previously, we demonstrated the efficacy of exosome treatment with intravenous delivery at 3 h post TBI in rats. Here, we show efficacy of exosomes through intranasal delivery at 48 h post TBI in mice lengthening the therapeutic window of treatment and therefore increasing possible translation to clinical studies. Our findings demonstrate significant recovery of motor impairment assessed by an elevated body swing test in mice treated with exosomes containing MALAT1 compared to both TBI mice without exosomes and exosomes depleted of MALAT1. Significant cognitive improvement was seen in the reversal trial of 8 arm radial arm water maze in mice treated with exosomes containing MALAT1. Furthermore, cortical damage was significantly reduced in mice treated with exosomes containing MALAT1 as well as decreased MHCII+ staining of microglial cells. Mice without exosomes or treated with exosomes depleted of MALAT1 did not show similar recovery. Results demonstrate both inflammation related genes and NRTK3 (TrkC) are target genes modulated by hASC exosomes and further that MALAT1 in hASC exosomes regulates expression of full length TrkC thereby activating the MAPK pathway and promoting recovery. Exosomes are a promising therapeutic approach following TBI with a therapeutic window of at least 48 h and contain long noncoding RNA's, specifically MALAT1 that play a vital role in the mechanism of action.


Assuntos
Tecido Adiposo/transplante , Lesões Encefálicas Traumáticas/terapia , Disfunção Cognitiva/terapia , Exossomos/transplante , Transtornos Motores/terapia , Transplante de Células-Tronco/métodos , Tecido Adiposo/metabolismo , Administração Intranasal , Animais , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Células Cultivadas , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Exossomos/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transtornos Motores/metabolismo , Transtornos Motores/patologia , RNA Longo não Codificante/administração & dosagem , Tempo para o Tratamento
7.
Int J Mol Sci ; 22(3)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498179

RESUMO

Type 2 diabetes mellitus is a metabolic disorder defined by systemic insulin resistance. Insulin resistance in adipocytes, an important regulator of glucose metabolism, results in impaired glucose uptake. The trafficking protein, sortilin, regulates major glucose transporter 4 (Glut4) movement, thereby promoting glucose uptake in adipocytes. Here, we demonstrate the presence of an alternatively spliced sortilin variant (Sort17b), whose levels increase with insulin resistance in mouse 3T3L1 adipocytes. Using a splicing minigene, we show that inclusion of alternative exon 17b results in the expression of Sort17b splice variant. Bioinformatic analysis indicated a novel intrinsic disorder region (IDR) encoded by exon 17b of Sort17b. Root mean square deviation (RMSD) and root mean square fluctuation (RMSF) measurements using molecular dynamics demonstrated increased flexibility of the protein backbone within the IDR. Using protein-protein docking and co-immunoprecipitation assays, we show robust binding of Glut4 to Sort17b. Further, results demonstrate that over-expression of Sort17b correlates with reduced Glut4 translocation and decreased glucose uptake in adipocytes. The study demonstrates that insulin resistance in 3T3L1 adipocytes promotes expression of a novel sortilin splice variant with thus far unknown implications in glucose metabolism. This knowledge may be used to develop therapeutics targeting sortilin variants in the management of type 2 diabetes and metabolic syndrome.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Processamento Alternativo , Células 3T3-L1 , Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Adipócitos/metabolismo , Animais , Sítios de Ligação , Glucose/metabolismo , Resistência à Insulina , Proteínas Intrinsicamente Desordenadas/química , Camundongos , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios Proteicos
8.
Mol Cell Biol ; 41(3): e0033820, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33288642

RESUMO

Lithium chloride (LiCl) is commonly used in treatment of mood disorders; however, its usage leads to weight gain, which promotes metabolic disorders. Protein kinase C delta (PKCδ), a serine/threonine kinase, is alternatively spliced to PKCδI and PKCδII in 3T3-L1 cells. We previously demonstrated that PKCδI is the predominantly expressed isoform in 3T3-L1 preadipocytes. Here, we demonstrate that LiCl treatment decreases PKCδI levels, increases formation of lipid droplets, and increases oxidative stress. Hence, we investigated the molecular mechanisms underlying the regulation of PKCδI alternative splicing by LiCl. We previously demonstrated that the splice factor SFRS10 is essential for PKCδI splicing. Our results demonstrate that glycogen synthase kinase 3 beta (GSK3ß) phosphorylates SFRS10, and SFRS10 is in a complex with long noncoding RNA NEAT1 to promote PKCδI splicing. Using PKCδ splicing minigene and RNA immunoprecipitation assays, our results demonstrate that upon LiCl treatment, NEAT1 levels are reduced, GSK3ß activity is inhibited, and SFRS10 phosphorylation is decreased, which leads to decreased expression of PKCδI. Integration of the GSK3ß signaling pathway with the ribonucleoprotein complex of long noncoding RNA (lncRNA) NEAT1 and SFRS10 enables fine-tuning of PKCδI expression during adipogenesis. Knowledge of the molecular pathways impacted by LiCl provides an understanding of the ascent of obesity as a comorbidity in disease management.

9.
J Biol Chem ; 294(41): 14896-14910, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31413114

RESUMO

The metabolic consequences and sequelae of obesity promote life-threatening morbidities. PKCδI is an important elicitor of inflammation and apoptosis in adipocytes. Here we report increased PKCδI activation via release of its catalytic domain concurrent with increased expression of proinflammatory cytokines in adipocytes from obese individuals. Using a screening strategy of dual recognition of PKCδI isozymes and a caspase-3 binding site on the PKCδI hinge domain with Schrödinger software and molecular dynamics simulations, we identified NP627, an organic small-molecule inhibitor of PKCδI. Characterization of NP627 by surface plasmon resonance (SPR) revealed that PKCδI and NP627 interact with each other with high affinity and specificity, SPR kinetics revealed that NP627 disrupts caspase-3 binding to PKCδI, and in vitro kinase assays demonstrated that NP627 specifically inhibits PKCδI activity. The SPR results also indicated that NP627 affects macromolecular interactions between protein surfaces. Of note, release of the PKCδI catalytic fragment was sufficient to induce apoptosis and inflammation in adipocytes. NP627 treatment of adipocytes from obese individuals significantly inhibited PKCδI catalytic fragment release, decreased inflammation and apoptosis, and significantly improved mitochondrial metabolism. These results indicate that PKCδI is a robust candidate for targeted interventions to manage obesity-associated chronic inflammatory diseases. We propose that NP627 may also be used in other biological systems to better understand the impact of caspase-3-mediated activation of kinase activity.


Assuntos
Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Obesidade/patologia , Proteína Quinase C-delta/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Adipócitos/patologia , Tecido Adiposo/patologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Respiração Celular/efeitos dos fármacos , Humanos , Obesidade/metabolismo , Proteína Quinase C-delta/metabolismo , Hormônio Liberador de Tireotropina/análogos & derivados , Hormônio Liberador de Tireotropina/farmacologia
10.
Cell Chem Biol ; 26(3): 319-330.e6, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30661991

RESUMO

Long noncoding RNA (lncRNA) are regulatory RNAs >200 nt. We previously showed that lncRNA GAS5 decreases significantly in serum of type 2 diabetes mellitus (T2DM) patients. Hence, we sought to decipher the molecular mechanisms underlying the role of GAS5 in T2DM in adipose tissue. Using CHIP-RIP, we demonstrate that GAS5 binds to promoter of insulin receptor to regulate its expression, and its depletion inhibits glucose uptake and insulin signaling. Toward stabilizing GAS5 levels in T2DM, we incorporated a strategy to limit the degradation of GAS5 by blocking the interaction of GAS5 and UPF1 with a small molecule identified using OBTC screening strategy. NP-C86 binds to GAS5 with high affinity, and increases GAS5 levels and glucose uptake in diabetic patient adipocytes. As a broader impact, NP-C86 may be used as a molecular probe to investigate the intricacies of GAS5 in relevant biological systems as it offers specificity, efficient cellular uptake and is non-cytotoxic.


Assuntos
Adipócitos/metabolismo , Diabetes Mellitus Tipo 2/patologia , RNA Longo não Codificante/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Tecido Adiposo/citologia , Diferenciação Celular , Diabetes Mellitus Tipo 2/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Humanos , Insulina/metabolismo , Regiões Promotoras Genéticas , Interferência de RNA , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/genética , RNA Interferente Pequeno/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transdução de Sinais , Bibliotecas de Moléculas Pequenas/química , Células-Tronco/citologia , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA