Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Phys Chem Chem Phys ; 26(17): 13239-13250, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634828

RESUMO

We synthesized a series of four parent aza-ß-ketoiminate organoboron complexes and performed spectroscopic studies using both experimental and computational techniques. We studied how benzannulation influences the vibronic structure of the UV/Vis absorption bands with a focus on the bright lowest-energy π → π* electronic excitation. Theoretical simulations, accounting for inhomogeneous broadening effects using different embedding schemes, allowed gaining in-depth insights into the observed differences in band shapes induced by structural modifications. We observed huge variations in the distributions of vibronic transitions depending on the position of benzannulation. By and large, the harmonic approximation combined with the adiabatic hessian model delivers qualitatively correct band shapes for the one-photon absorption spectra, except in one case. We also assessed the importance of non-Condon effects (accounted for by the linear term in Herzberg-Teller expansion of the dipole moment) for S0 → S1 band shapes. It turned out that non-Condon contributions have no effect on the band shape in one-photon absorption spectra. In contrast, these effects significantly change the Franck-Condon band shapes of the two-photon absorption spectra. For one of the studied organoboron complexes we also performed a preliminary exploration of mechanical anharmonicity, resulting in an increase of the intensity of the 0-0 transition, which improves the agreement with the experimental data compared to the harmonic model.

2.
J Chem Theory Comput ; 20(8): 3144-3153, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38570186

RESUMO

We analyze the varying susceptibilities of different density functional approximations (DFAs) to present spurious oscillations on the profiles of several vibrational properties. Among other problems, these spurious oscillations cause significant errors in harmonic and anharmonic IR and Raman frequencies and intensities. This work hinges on a judicious strategy to dissect the exchange and correlation components of DFAs and pinpoint the origins of these oscillations. We identify spurious oscillations in derivatives of all energy components with respect to nuclear displacements, including those energy terms that do not involve numerical integrations. These indirect spurious oscillations are attributed to suboptimal electron densities resulting from a self-consistent field procedure using a DFA that exhibits direct spurious oscillations. Direct oscillations stem from inaccurate numerical integration of the exchange and correlation energy density functionals. A thorough analysis of direct spurious oscillations reveals that only a handful of exchange and correlation components are insensitive to spurious oscillations, giving rise to three families of functionals, BH&H, LSDA, and BLYP. Among the functionals in these families, we encounter four widespread DFAs: BLYP, B3LYP, LC-BLYP, and CAM-B3LYP. Certain DFAs like PBE appear less sensitive to spurious oscillations due to compensatory cancellations between their energy components. Additionally, we found non-negligible but small oscillations in PBE and TPSS, which could be safely employed provided a sufficiently large integration grid is used in the calculations. These findings hint at the key components of current approximations to be improved and emphasize the necessity to develop accurate DFAs suitable for studying molecular spectroscopies.

3.
Phys Chem Chem Phys ; 25(44): 30193-30197, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37905423

RESUMO

In this Communication, we study the effect of spurious oscillations in the profiles of energy derivatives with respect to nuclear coordinates calculated with density functional approximations (DFAs) for formaldehyde, pyridine, and furan in their ground and electronic excited states. These spurious oscillations, which can only be removed using extensive integration grids that increase enormously the CPU cost of DFA calculations, are significant in the case of third- and fourth-order energy derivatives of the ground and excited states computed by M06-2X and ωB97X functionals. The errors in question propagate to anharmonic vibronic spectra computed under the Franck-Condon approximation, i.e., positions and intensities of vibronic transitions are affected to a large extent (shifts as significant as hundreds of cm-1 were observed). On the other hand, the LC-BLYP and CAM-B3LYP functionals show a much less pronounced effect due to spurious oscillations. Based on the results presented herein, we recommend either LC-BLYP or CAM-B3LYP with integration grids (250, 974) (or larger) for numerically stable simulations of vibronic spectra including anharmonic effects.

4.
Inorg Chem ; 62(37): 14873-14887, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37651747

RESUMO

Titanium compounds in low oxidation states are highly reducing species and hence powerful tools for the functionalization of small molecules. However, their potential has not yet been fully realized because harnessing these highly reactive complexes for productive reactivity is generally challenging. Advancing this field, herein we provide a detailed route for the formation of titanium(III) orthophenylendiamido (PDA) species using [LiBHEt3] as a reducing agent. Initially, the corresponding lithium PDA compounds [Li2(ArPDA)(thf)3] (Ar = 2,4,6-trimethylphenyl (MesPDA), 2,6-diisopropylphenyl (iPrPDA)) are combined with [TiCl4(thf)2] to form the heterobimetallic complexes [{TiCl(ArPDA)}(µ-ArPDA){Li(thf)n}] (n = 1, Ar = iPr 3 and n = 2, Ar = Mes 4). Compound 4 evolves to species [Ti(MesPDA)2] (6) via thermal treatment. In contrast, the transformation of 3 into [Ti(iPrPDA)2] (5) only occurs in the presence of [LiNMe2], through a lithium-assisted process, as revealed by density functional theory (DFT). Finally, the Ti(IV) compounds 3-6 react with [LiBHEt3] to give rise to the Ti(III) species [Li(thf)4][Ti(ArPDA)2] (Ar = iPr 8, Mes 9). These low-valent compounds in combination with [PPN]Cl (PPN = bis(triphenylphosphine)iminium) are proved to be highly selective catalysts for the copolymerization of CO2 and cyclohexene epoxide. Reactions occur at 1 bar pressure with activity/selectivity levels similar to Salen-Cr(III) compounds.

5.
Phys Chem Chem Phys ; 25(30): 20173-20177, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37466634

RESUMO

A recently developed computational scheme is employed to interpret changes in the infrared spectra of halogen-bonded systems in terms of intermolecular interaction energy components (electrostatic, exchange, induction, dispersion) taking pyridine⋯perfluorohaloarene complexes as examples. For all complexes, we find a strong linear correlation between the different terms of the interaction-induced changes of the IR band associated with an intermolecular halogen bond stretching mode and the corresponding terms of the interaction energy, which implies that the interaction components play similar roles in both properties. This is not true for other vibrational modes localized in one of the monomers studied here, for which the corresponding interaction-induced changes in IR bands may present a completely different decomposition than the interaction energy.

6.
J Chem Phys ; 158(24)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37358217

RESUMO

We present a straightforward and low-cost computational protocol to estimate the variation of the charge transfer rate constant, kCT, in a molecular donor-acceptor caused by an external electric field. The proposed protocol also allows for determining the strength and direction of the field that maximize the kCT. The application of this external electric field results in up to a >4000-fold increase in the kCT for one of the systems studied. Our method allows the identification of field-induced charge-transfer processes that would not occur without the perturbation caused by an external electric field. In addition, the proposed protocol can be used to predict the effect on the kCT due to the presence of charged functional groups, which may allow for the rational design of more efficient donor-acceptor dyads.

7.
J Chem Theory Comput ; 19(8): 2304-2315, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37096370

RESUMO

The results of electronic and vibrational structure simulations are an invaluable support for interpreting experimental absorption/emission spectra, which stimulates the development of reliable and cost-effective computational protocols. In this work, we contribute to these efforts and propose an efficient first-principle protocol for simulating vibrationally-resolved absorption spectra, including nonempirical estimations of the inhomogeneous broadening. To this end, we analyze three key aspects: (i) a metric-based selection of density functional approximation (DFA) so to benefit from the computational efficiency of time-dependent density function theory (TD-DFT) while safeguarding the accuracy of the vibrationally-resolved spectra, (ii) an assessment of two vibrational structure schemes (vertical gradient and adiabatic Hessian) to compute the Franck-Condon factors, and (iii) the use of machine learning to speed up nonempirical estimations of the inhomogeneous broadening. In more detail, we predict the absorption band shapes for a set of 20 medium-sized fluorescent dyes, focusing on the bright ππ★ S0 → S1 transition and using experimental results as references. We demonstrate that, for the studied 20-dye set which includes structures with large structural variability, the preselection of DFAs based on an easily accessible metric ensures accurate band shapes with respect to the reference approach and that range-separated functionals show the best performance when combined with the vertical gradient model. As far as band widths are concerned, we propose a new machine-learning-based approach for determining the inhomogeneous broadening induced by the solvent microenvironment. This approach is shown to be very robust offering inhomogeneous broadenings with errors as small as 2 cm-1 with respect to genuine electronic-structure calculations, with a total CPU time reduced by 98%.

8.
Phys Chem Chem Phys ; 25(16): 11658-11664, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37043249

RESUMO

The popularity of infrared (IR) spectroscopy is due to its high interpretive power. This study presents a new computational tool for analyzing the IR spectra of molecular complexes in terms of intermolecular interaction energy components. In particular, the proposed scheme enables associating the changes in the IR spectra occurring upon complex formation with individual types of intermolecular interactions (electrostatic, exchange, induction, and dispersion), thus providing a completely new insight into the relations between the spectral features and the nature of interactions in molecular complexes. To demonstrate its interpretive power, we analyze, for selected vibrational modes, which interaction types rule the IR intensity changes upon the formation of two different types of complexes, namely π⋯π stacked (benzene⋯1,3,5-trifluorobenzene) and hydrogen-bonded (HCN⋯HNC) systems. The exemplary applications of the new scheme to these two molecular complexes revealed that the interplay of interaction energy components governing their stability might be very different from that behind the IR intensity changes. For example, in the case of the dispersion-bound π⋯π-type complex, dispersion contributions to the interaction induced IR intensity of the selected modes are notably smaller than their first-order (electrostatic and exchange) counterparts.

9.
J Chem Theory Comput ; 19(6): 1753-1764, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36862983

RESUMO

Key components of organic-based electro-optic devices are challenging to design or optimize because they exhibit nonlinear optical responses, which are difficult to model or rationalize. Computational chemistry furnishes the tools to investigate extensive collections of molecules in the quest for target compounds. Among the electronic structure methods that provide static nonlinear optical properties (SNLOPs), density functional approximations (DFAs) are often preferred because of their low cost/accuracy ratio. However, the accuracy of the SNLOPs critically depends on the amount of exact exchange and electron correlation included in the DFA, precluding the reliable calculation of many molecular systems. In this scenario, wave function methods such as MP2, CCSD, and CCSD(T) constitute a reliable alternative to compute SNLOPs. Unfortunately, the computational cost of these methods significantly restricts the size of molecules to study, a limitation that hampers the identification of molecules with significant nonlinear optical responses. This paper analyzes various flavors and alternatives to MP2, CCSD, and CCSD(T) methods that either drastically reduce the computational cost or improve their performance but were scarcely and unsystematically employed to compute SNLOPs. In particular, we have tested RI-MP2, RIJK-MP2, RIJCOSX-MP2 (with GridX2 and GridX4 setups), LMP2, SCS-MP2, SOS-MP2, DLPNO-MP2, LNO-CCSD, LNO-CCSD(T), DLPNO-CCSD, DLPNO-CCSD(T0), and DLPNO-CCSD(T1). Our results indicate that all these methods can be safely employed to calculate the dipole moment and the polarizability with average relative errors below 5% with respect to CCSD(T). On the other hand, the calculation of higher-order properties represents a challenge for LNO and DLPNO methods, which present severe numerical instabilities in computing the single-point field-dependent energies. RI-MP2, RIJK-MP2, or RIJCOSX-MP2 are cost-effective methods to compute first and second hyperpolarizabilities with a marginal average error with respect to canonical MP2 (up to 5% for ß and up to 11% for γ). More accurate hyperpolarizabilities can be obtained with DLPNO-CCSD(T1); however, this method cannot be employed to obtain reliable second hyperpolarizabilities. These results open the way to obtain accurate nonlinear optical properties at a computational cost that can compete with current DFAs.

10.
Angew Chem Int Ed Engl ; 62(2): e202211361, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36305539

RESUMO

Two oxoiron(IV) isomers (R 2a and R 2b) of general formula [FeIV (O)(R PyNMe3 )(CH3 CN)]2+ are obtained by reaction of their iron(II) precursor with NBu4 IO4 . The two isomers differ in the position of the oxo ligand, cis and trans to the pyridine donor. The mechanism of isomerization between R 2a and R 2b has been determined by kinetic and computational analyses uncovering an unprecedented path for interconversion of geometrical oxoiron(IV) isomers. The activity of the two oxoiron(IV) isomers in hydrogen atom transfer (HAT) reactions shows that R 2a reacts one order of magnitude faster than R 2b, which is explained by a repulsive noncovalent interaction between the ligand and the substrate in R 2b. Interestingly, the electronic properties of the R substituent in the ligand pyridine ring do not have a significant effect on reaction rates. Overall, the intrinsic structural aspects of each isomer define their relative HAT reactivity, overcoming changes in electronic properties of the ligand.


Assuntos
Hidrogênio , Oxigênio , Hidrogênio/química , Ligantes , Oxigênio/química , Ferro/química , Piridinas/química , Oxirredução
11.
J Org Chem ; 87(22): 15159-15165, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36317734

RESUMO

We have studied the halogen-bonding interactions of a pyridine-functionalized fluoroborate dye with perfluorohaloarenes (C6F6, C6F5Cl, C6F5Br, and C6F5I) in the two-component-only liquid phase using fluorescence spectroscopy. Based on the results of spectroscopic measurements and electronic-structure calculations, we have confirmed the stability only for the complex between C6F5I and the emissive dye, and it has been demonstrated that halogen-bonding interactions are accompanied by significant Stokes shifts for the ππ* band. We also provide experimental evidence that for this complex, the emission is quenched due to a simultaneous decrease of radiative and increase of nonradiative decay rate constants upon halogen-bonding interactions.

12.
J Am Chem Soc ; 144(42): 19542-19558, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36228322

RESUMO

Reactions that enable selective functionalization of strong aliphatic C-H bonds open new synthetic paths to rapidly increase molecular complexity and expand chemical space. Particularly valuable are reactions where site-selectivity can be directed toward a specific C-H bond by catalyst control. Herein we describe the catalytic site- and stereoselective γ-lactonization of unactivated primary C-H bonds in carboxylic acid substrates. The system relies on a chiral Mn catalyst that activates aqueous hydrogen peroxide to promote intramolecular lactonization under mild conditions, via carboxylate binding to the metal center. The system exhibits high site-selectivity and enables the oxidation of unactivated primary γ-C-H bonds even in the presence of intrinsically weaker and a priori more reactive secondary and tertiary ones at α- and ß-carbons. With substrates bearing nonequivalent γ-C-H bonds, the factors governing site-selectivity have been uncovered. Most remarkably, by manipulating the absolute chirality of the catalyst, γ-lactonization at methyl groups in gem-dimethyl structural units of rigid cyclic and bicyclic carboxylic acids can be achieved with unprecedented levels of diastereoselectivity. Such control has been successfully exploited in the late-stage lactonization of natural products such as camphoric, camphanic, ketopinic, and isoketopinic acids. DFT analysis points toward a rebound type mechanism initiated by intramolecular 1,7-HAT from a primary γ-C-H bond of the bound substrate to a highly reactive MnIV-oxyl intermediate, to deliver a carbon radical that rapidly lactonizes through carboxylate transfer. Intramolecular kinetic deuterium isotope effect and 18O labeling experiments provide strong support to this mechanistic picture.


Assuntos
Produtos Biológicos , Ácidos Carboxílicos , Produtos Biológicos/química , Peróxido de Hidrogênio , Deutério , Catálise , Carbono/química
13.
Inorg Chem ; 61(35): 14075-14085, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35997604

RESUMO

Cobalt-catalyzed C-H amination via M-nitrenoid species is spiking the interest of the research community. Understanding this process at a molecular level is a challenging task, and here we report a well-defined macrocyclic system featuring a pseudo-Oh aryl-CoIII species that reacts with aliphatic azides to effect intramolecular Csp2-N bond formation. Strikingly, a putative aryl-Co═NR nitrenoid intermediate species is formed and is rapidly trapped by a carboxylate ligand to form a carboxylate masked-nitrene, which functions as a shortcut to stabilize and guide the reaction to productive intramolecular Csp2-N bond formation. On one hand, several intermediate species featuring the Csp2-N bond formed have been isolated and structurally characterized, and the essential role of the carboxylate ligand has been proven. Complementarily, a thorough density functional theory study of the Csp2-N bond formation mechanism explains at the molecular level the key role of the carboxylate-masked nitrene species, which is essential to tame the metastability of the putative aryl-CoIII═NR nitrene species to effectively yield the Csp2-N products. The solid molecular mechanistic scheme determined for the Csp2-N bond forming reaction is fully supported by both experimental and computation complementary studies.


Assuntos
Ácidos Carboxílicos , Aminação , Ácidos Carboxílicos/química , Catálise , Iminas , Ligantes , Estrutura Molecular
14.
J Phys Chem Lett ; 13(25): 5963-5968, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35735354

RESUMO

We show that properties of molecules with low-frequency modes calculated with density functional approximations (DFAs) suffer from spurious oscillations along the nuclear displacement coordinate due to numerical integration errors. Occasionally, the problem can be alleviated using extensive integration grids that compromise the favorable cost-accuracy ratio of DFAs. Since spurious oscillations are difficult to predict or identify, DFAs are exposed to severe performance errors in IR and Raman intensities and frequencies or vibrational contributions to any molecular property. Using Fourier spectral analysis and digital signal processing techniques, we identify and quantify the error due to these oscillations for 45 widely used DFAs. LC-BLYP and BH&H are revealed as the only functionals showing robustness against the spurious oscillations of various energy, dipole moment, and polarizability derivatives with respect to a nuclear displacement coordinate. Given the ubiquitous nature of molecules with low-frequency modes, we warrant caution in using modern DFAs to simulate vibrational spectroscopies.


Assuntos
Teoria Quântica , Análise Espectral Raman , Espectroscopia de Infravermelho com Transformada de Fourier , Vibração
15.
J Phys Chem A ; 125(22): 4819-4835, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34038110

RESUMO

Electrides are very peculiar ionic compounds where electrons occupy the anionic positions. In a crystal lattice, these isolated electrons often form channels or surfaces, furnishing electrides with many traits with promising technological applications. Despite their huge potential, thus far, only a few stable electrides have been produced because of the intricate synthesis they entail. Due to the difficulty in assessing the presence of isolated electrons, the characterization of electrides also poses some serious challenges. In fact, their properties are expected to depend on the arrangement of these electrons in the molecule. Among the criteria that we can use to characterize electrides, the presence of a non-nuclear attractor (NNA) of the electron density is both the rarest and the most salient feature. Therefore, a correct description of the NNA is crucial to determine the properties of electrides. In this paper, we analyze the NNA and the surrounding region of nine molecular electrides to determine the number of isolated electrons held in the electride. We have seen that the correct description of a molecular electride hinges on the electronic structure method employed for the analyses. In particular, one should employ a basis set with sufficient flexibility to describe the region close to the NNA and a density functional approximation that does not suffer from large delocalization errors. Finally, we have classified these nine molecular electrides according to the most likely number of electrons that we can find in the NNA. We believe this classification highlights the strength of the electride character and will prove useful in designing new electrides.

16.
Phys Chem Chem Phys ; 23(9): 5376-5384, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33645598

RESUMO

The shift towards renewable energy is one of the main challenges of this generation. Dye-sensitized solar cells (DSSCs), based on donor-acceptor architectures, can help in this transition as they present excellent photovoltaic efficiencies yet cheap and simple manufacturing. For molecular heterojunction DSSCs, donor-acceptor pairs are linked in a covalent manner, which facilitates their tailoring and rational design. Nevertheless, reliable computational characterization of charge transfer rate constants (kCT) is needed to speed this development process up. In this context, the performance of time-dependent density functional theory for the calculation of kCT values in donor-acceptor fullerene-based dyads has not been benchmarked yet. Herein, we present a detailed analysis on the performance of seven well-known density functional approximations (DFAs) for this type of system, focusing on several parameters such as the reorganization energies (λ), electronic couplings (VDA), and Gibbs energies (ΔG0CT), as well as the final rate constants. The amount of exact exchange at short range (SR) and long range (LR) electron-electron distances (and the transition from the SR to LR) turned out to be key for the success of the prediction. The tuning of these parameters improves significantly the performance of current DFAs.

17.
J Chem Theory Comput ; 17(2): 1098-1105, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33439029

RESUMO

Real-space analysis tools afford additive and transferable contributions of atoms to molecular properties. In the case of the molecular (hyper)polarizabilities, the atomic contributions that have been derived so far include a charge-transfer term that is origin-dependent. In this letter, we present the first genuinely origin-independent energy-based (OIEB) methodology for the decomposition of the static (hyper)polarizabilities that benefits from real-space molecular energy decomposition schemes, focusing on the static polarizability and showing that extension to static hyperpolarizabilities is straightforward. The numerical realization of the OIEB method shows the expected origin independence, atomic additivity, and transferability of atomic and functional group polarizability tensors. Furthermore, the OIEB atomic (fragment) polarizability tensors are symmetric by definition.

18.
Front Chem ; 9: 801426, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35071188

RESUMO

Infrared (IR) spectroscopy is commonly used in chemical laboratories to study the geometrical structure of molecules and molecular complexes. The analysis of experimental IR spectra can nowadays be reliably supported by the results of quantum-chemical computations as vibrational frequencies and corresponding vibrational transition intensities are routinely calculated using harmonic approximation by virtually all quantum chemistry packages. In the present study we combine the methodology of computing vibrational spectra using high-level electron correlation treatments with an analytical potential-based approach to take into account spatial confinement effects. Using this approach, we perform a pioneering analysis of the impact of the spatial confinement caused by a cylindrical harmonic oscillator potential on the harmonic vibrational transition intensities and frequencies of two hydrogen-bonded complexes: HCN…HCN and HCN…HNC. The emphasis is put on the largest-intensity bands, which correspond to the stretching vibrations. The obtained results demonstrate that embedding the molecular complexes in an external confining potential causes significant changes of transition intensities and vibrational frequencies.

19.
Organometallics ; 40(9): 1195-1200, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36158566

RESUMO

Herein we explore the intrinsic organometallic reactivity of iron embedded in a tetradentate N3C macrocyclic ligand scaffold that allows the stabilization of aryl-Fe species, which are key intermediates in Fe-catalyzed cross-coupling and C-H functionalization processes. This study covers C-H activation reactions using Me L H and FeCl2, biaryl C-C coupling product formation through reaction with Grignard reagents, and cross-coupling reactions using Me L Br or H L Br in combination with Fe0(CO)5. Synthesis under light irradiation and moderate heating (50 °C) affords the aryl-FeII complexes [FeII(Br)( Me L)(CO)] (1 Me ) and [FeII( H L)(CO)2]Br (1 H ). Exhaustive spectroscopic characterization of these rare low-spin diamagnetic species, including their crystal structures, allowed the investigation of their intrinsic reactivity.

20.
Inorg Chem ; 59(23): 17018-17027, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33156988

RESUMO

C-F bonds are one of the most inert functionalities. Nevertheless, some [Cu2O2]2+ species are able to defluorinate-hydroxylate ortho-fluorophenolates in a chemoselective manner over other ortho-halophenolates. Albeit it is known that such reactivity is promoted by an electrophilic attack of a [Cu2O2]2+ core over the arene ring, the crucial details of the mechanism that explain the chemo- and regioselectivity of the reaction remain unknown, and it has not being determined either if CuII2(η2:η2-O2) or CuIII2(µ-O)2 species are responsible for the initial attack on the arene. Herein, we present a combined theoretical and experimental mechanistic study to unravel the origin of the chemoselectivity of the ortho-defluorination-hydroxylation of 2-halophenolates by the [Cu2(O)2(DBED)2]2+ complex (DBED = N,N'-di-tert-butylethylenediamine). Our results show that the equilibria between (side-on)peroxo (P) and bis(µ-oxo) (O) isomers plays a key role in the mechanism, with the latter being the reactive species. Furthermore, on the basis of quantum-mechanical calculations, we were able to rationalize the chemoselective preference of the [Cu2(O)2(DBED)2]2+ catalyst for the C-F activation over C-Cl and C-H activations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA