Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 410
Filtrar
1.
J Clin Invest ; 134(16)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-39145444

RESUMO

A disturbed balance between excitation and inhibition (E/I balance) is increasingly recognized as a key driver of neurodegeneration in multiple sclerosis (MS), a chronic inflammatory disease of the central nervous system. To understand how chronic hyperexcitability contributes to neuronal loss in MS, we transcriptionally profiled neurons from mice lacking inhibitory metabotropic glutamate signaling with shifted E/I balance and increased vulnerability to inflammation-induced neurodegeneration. This revealed a prominent induction of the nuclear receptor NR4A2 in neurons. Mechanistically, NR4A2 increased susceptibility to excitotoxicity by stimulating continuous VGF secretion leading to glycolysis-dependent neuronal cell death. Extending these findings to people with MS (pwMS), we observed increased VGF levels in serum and brain biopsies. Notably, neuron-specific deletion of Vgf in a mouse model of MS ameliorated neurodegeneration. These findings underscore the detrimental effect of a persistent metabolic shift driven by excitatory activity as a fundamental mechanism in inflammation-induced neurodegeneration.


Assuntos
Glicólise , Inflamação , Neurônios , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares , Animais , Camundongos , Humanos , Neurônios/metabolismo , Neurônios/patologia , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Inflamação/metabolismo , Inflamação/patologia , Inflamação/genética , Esclerose Múltipla/patologia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/genética , Camundongos Knockout , Transdução de Sinais , Masculino , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia
2.
J Cell Biol ; 223(11)2024 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-39150509

RESUMO

Huntington's disease (HD) is caused by a polyglutamine expansion of the huntingtin protein, resulting in the formation of polyglutamine aggregates. The mechanisms of toxicity that result in the complex HD pathology remain only partially understood. Here, we show that nuclear polyglutamine aggregates induce nuclear envelope (NE) blebbing and ruptures that are often repaired incompletely. These ruptures coincide with disruptions of the nuclear lamina and lead to lamina scar formation. Expansion microscopy enabled resolving the ultrastructure of nuclear aggregates and revealed polyglutamine fibrils sticking into the cytosol at rupture sites, suggesting a mechanism for incomplete repair. Furthermore, we found that NE repair factors often accumulated near nuclear aggregates, consistent with stalled repair. These findings implicate nuclear polyQ aggregate-induced loss of NE integrity as a potential contributing factor to Huntington's disease and other polyglutamine diseases.


Assuntos
Doença de Huntington , Membrana Nuclear , Peptídeos , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestrutura , Humanos , Peptídeos/metabolismo , Peptídeos/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Doença de Huntington/genética , Animais , Proteína Huntingtina/metabolismo , Proteína Huntingtina/genética , Agregados Proteicos , Lâmina Nuclear/metabolismo , Lâmina Nuclear/ultraestrutura , Núcleo Celular/metabolismo
3.
Methods Mol Biol ; 2845: 95-108, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39115660

RESUMO

Selective autophagy of protein aggregates, called aggrephagy, is vital for maintaining cellular homeostasis. Classically, studying aggrephagy has been challenging due to the infrequent occurrence of autophagic events and the lack of control over the specificity and timing of protein aggregation. We previously reported two variants of a PIM (particles induced by multimerization) assay that enable the formation of chemically induced, fluorescently labeled protein aggregates in cells. PIMs are recognized by the selective autophagy machinery and are subsequently degraded in the lysosome. By making use of pH-sensitive fluorescent proteins, such as GFP or mKeima, the PIM assay allows for direct visualization of aggregate clearance in cells. Here, we describe a protocol for the use of the PIM assay to study aggrephagy in live and fixed cells.


Assuntos
Autofagia , Agregados Proteicos , Humanos , Multimerização Proteica , Lisossomos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética
4.
Transl Lung Cancer Res ; 13(7): 1749-1755, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39118880

RESUMO

Background: Capmatinib, a potent and selective MET tyrosine kinase inhibitor (TKI), holds promise as a therapeutic agent due to its potentially elevated intracranial efficacy in metastatic non-small cell lung cancer (NSCLC) patients harboring exon 14 skipping alterations in MET (MET Proto-Oncogene). This study aims to evaluate a targeted therapeutic approach to an MET exon 14 skipping (METex14) advanced NSCLC patient that progressed on Crizotinib and developed off target resistance alteration in PIK3CA. Case Discription: We present a case of advanced METex14 NSCLC patient wherein central nervous system (CNS) relapse occurred post complete surgical resection and remission of the lung tumor under first-line crizotinib treatment. Subsequent disease monitoring demonstrated a profound intracranial response to capmatinib in a crizotinib-resistant brain lesion. Molecular analysis unveiled the original METex14 D1028N driver mutation and a newly arisen PIK3CA bypass mutation, potentially contributing to off-target resistance. Conclusions: Before capmatinib was approved as a first line treatment option for metastatic NSCLC harboring somatic METex14 mutations, crizotinib conferred a potential option for targeted treatment. Switching to a selective MET-TKI like capmatinib with a better CNS penetration, it appears to be a promising approach for CNS metastasized NSCLC patients with METex14 mutations that failed on crizotinib. Further research is needed to more effectively understand and monitor resistance mechanisms using advanced diagnostic techniques such as DNA-based hybrid-capture (HC) next generation sequencing (NGS) to guide molecularly stratified therapy beyond the first line setting.

5.
Cell ; 187(15): 4043-4060.e30, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38878778

RESUMO

Inflammation-induced neurodegeneration is a defining feature of multiple sclerosis (MS), yet the underlying mechanisms remain unclear. By dissecting the neuronal inflammatory stress response, we discovered that neurons in MS and its mouse model induce the stimulator of interferon genes (STING). However, activation of neuronal STING requires its detachment from the stromal interaction molecule 1 (STIM1), a process triggered by glutamate excitotoxicity. This detachment initiates non-canonical STING signaling, which leads to autophagic degradation of glutathione peroxidase 4 (GPX4), essential for neuronal redox homeostasis and thereby inducing ferroptosis. Both genetic and pharmacological interventions that target STING in neurons protect against inflammation-induced neurodegeneration. Our findings position STING as a central regulator of the detrimental neuronal inflammatory stress response, integrating inflammation with glutamate signaling to cause neuronal cell death, and present it as a tractable target for treating neurodegeneration in MS.


Assuntos
Inflamação , Proteínas de Membrana , Esclerose Múltipla , Neurônios , Animais , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Camundongos , Humanos , Inflamação/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Transdução de Sinais , Autofagia , Camundongos Endogâmicos C57BL , Ácido Glutâmico/metabolismo , Ferroptose , Modelos Animais de Doenças , Feminino , Masculino
6.
Dev Cell ; 59(16): 2053-2068.e9, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38815583

RESUMO

Local mRNA translation in axons is critical for the spatiotemporal regulation of the axonal proteome. A wide variety of mRNAs are localized and translated in axons; however, how protein synthesis is regulated at specific subcellular sites in axons remains unclear. Here, we establish that the axonal endoplasmic reticulum (ER) supports axonal translation in developing rat hippocampal cultured neurons. Axonal ER tubule disruption impairs local translation and ribosome distribution. Using nanoscale resolution imaging, we find that ribosomes make frequent contacts with axonal ER tubules in a translation-dependent manner and are influenced by specific extrinsic cues. We identify P180/RRBP1 as an axonally distributed ribosome receptor that regulates local translation and binds to mRNAs enriched for axonal membrane proteins. Importantly, the impairment of axonal ER-ribosome interactions causes defects in axon morphology. Our results establish a role for the axonal ER in dynamically localizing mRNA translation, which is important for proper neuron development.


Assuntos
Axônios , Retículo Endoplasmático , Hipocampo , Biossíntese de Proteínas , RNA Mensageiro , Ribossomos , Animais , Retículo Endoplasmático/metabolismo , Ribossomos/metabolismo , Axônios/metabolismo , Ratos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Células Cultivadas , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/genética , Humanos
7.
JCO Precis Oncol ; 8: e2300348, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38513168

RESUMO

PURPOSE: Poly(ADP-ribose) polymerase inhibitors (PARPi) have shown promising clinical results in the treatment of ovarian cancer. Analysis of biomarker subgroups consistently revealed higher benefits for patients with homologous recombination deficiency (HRD). The test that is most often used for the detection of HRD in clinical studies is the Myriad myChoice assay. However, other assays can also be used to assess biomarkers, which are indicative of HRD, genomic instability (GI), and BRCA1/2 mutation status. Many of these assays have high potential to be broadly applied in clinical routine diagnostics in a time-effective decentralized manner. Here, we compare the performance of a multitude of alternative assays in comparison with Myriad myChoice in high-grade serous ovarian cancer (HGSOC). METHODS: DNA from HGSOC samples was extracted from formalin-fixed paraffin-embedded tissue blocks of cases previously run with the Myriad myChoice assay, and GI was measured by multiple molecular assays (CytoSNP, AmoyDx, Illumina TSO500 HRD, OncoScan, NOGGO GISv1, QIAseq HRD Panel and whole genome sequencing), applying different bioinformatics algorithms. RESULTS: Application of different assays to assess GI, including Myriad myChoice, revealed high concordance of the generated scores ranging from very substantial to nearly perfect fit, depending on the assay and bioinformatics pipelines applied. Interlaboratory comparison of assays also showed high concordance of GI scores. CONCLUSION: Assays for GI assessment not only show a high concordance with each other but also in correlation with Myriad myChoice. Thus, almost all of the assays included here can be used effectively to assess HRD-associated GI in the clinical setting. This is important as PARPi treatment on the basis of these tests is compliant with European Medicines Agency approvals, which are methodologically not test-bound.


Assuntos
Proteína BRCA1 , Neoplasias Ovarianas , Humanos , Feminino , Proteína BRCA1/genética , Mutação , Proteína BRCA2/genética , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/tratamento farmacológico , Instabilidade Genômica/genética , Recombinação Homóloga/genética
8.
Sci Adv ; 9(47): eadi6855, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38000031

RESUMO

Neuroinflammation causes neuronal injury in multiple sclerosis (MS) and other neurological diseases. MicroRNAs (miRNAs) are important modulators of neuronal stress responses, but knowledge about their contribution to neuronal protection or damage during inflammation is limited. Here, we constructed a regulatory miRNA-mRNA network of inflamed motor neurons by leveraging cell type-specific miRNA and mRNA sequencing of mice undergoing experimental autoimmune encephalomyelitis (EAE). We found robust induction of miR-92a in inflamed spinal cord neurons and identified cytoplasmic polyadenylation element-binding protein 3 (Cpeb3) as a key target of miR-92a-mediated posttranscriptional silencing. We detected CPEB3 repression in inflamed neurons in murine EAE and human MS. Moreover, both miR-92a delivery and Cpeb3 deletion protected neuronal cultures against excitotoxicity. Supporting a detrimental effect of Cpeb3 in vivo, neuron-specific deletion in conditional Cpeb3 knockout animals led to reduced inflammation-induced clinical disability in EAE. Together, we identified a neuroprotective miR-92a-Cpeb3 axis in neuroinflammation that might serve as potential treatment target to limit inflammation-induced neuronal damage.


Assuntos
Encefalomielite Autoimune Experimental , MicroRNAs , Esclerose Múltipla , Humanos , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Doenças Neuroinflamatórias , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Inflamação/genética , Inflamação/metabolismo , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Camundongos Endogâmicos C57BL , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
9.
Curr Oncol ; 30(10): 8805-8814, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37887535

RESUMO

EGFR-mutant lung cancers develop a wide range of potential resistance alterations under therapy with the third-generation EGFR tyrosine kinase inhibitor osimertinib. MET amplification ranks among the most common acquired resistance alterations and is currently being investigated as a therapeutic target in several studies. Nevertheless, targeted therapy of MET might similarly result in acquired resistance by point mutations in MET, which further expands therapeutic and diagnostic challenges. Here, we report a 50-year-old male patient with EGFR-mutant lung adenocarcinoma and stepwise acquired resistance by a focal amplification of MET followed by D1246N (D1228N), D1246H (D1228H), and L1213V (L1195V) point mutations in MET, all detected by NGS. The patient successfully responded to the combined and sequential treatment of osimertinib, osimertinib/crizotinib, and third-line osimertinib/cabozantinib. This case highlights the importance of well-designed, sequential molecular diagnostic analyses and the personalized treatment of patients with acquired resistance.


Assuntos
Neoplasias Pulmonares , Humanos , Masculino , Pessoa de Meia-Idade , Crizotinibe/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Inibidores de Proteínas Quinases/efeitos adversos , Proteínas Proto-Oncogênicas c-met/genética
10.
Nat Methods ; 20(10): 1573-1580, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37723243

RESUMO

Expansion microscopy (ExM) is a powerful technique to overcome the diffraction limit of light microscopy by physically expanding biological specimen in three dimensions. Nonetheless, using ExM for quantitative or diagnostic applications requires robust quality control methods to precisely determine expansion factors and to map deformations due to anisotropic expansion. Here we present GelMap, a flexible workflow to introduce a fluorescent grid into pre-expanded hydrogels that scales with expansion and reports deformations. We demonstrate that GelMap can be used to precisely determine the local expansion factor and to correct for deformations without the use of cellular reference structures or pre-expansion ground-truth images. Moreover, we show that GelMap aids sample navigation for correlative uses of expansion microscopy. Finally, we show that GelMap is compatible with expansion of tissue and can be readily implemented as a quality control step into existing ExM workflows.

11.
Sports Med Open ; 9(1): 79, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37640958

RESUMO

BACKGROUND: High prevalence rates of ß2-agonist use among athletes in competitive sports makes it tempting to speculate that illegitimate use of ß2-agonists boosts performance. However, data regarding the potential performance-enhancing effects of inhaled ß2-agonists and its underlying molecular basis are scarce. METHODS: In total, 24 competitive endurance athletes (12f/12m) participated in a clinical double-blinded balanced four-way block cross-over trial to investigate single versus combined effects of ß2-agonists salbutamol (SAL) and formoterol (FOR), to evaluate the potential performance enhancement of SAL (1200 µg, Cyclocaps, Pb Pharma GmbH), FOR (36 µg, Sandoz, HEXAL AG) and SAL + FOR (1200 µg + 36 µg) compared to placebo (PLA, Gelatine capsules containing lactose monohydrate, Pharmacy of the University Hospital Ulm). Measurements included skeletal muscle gene and protein expression, endocrine regulation, urinary/serum ß2-agonist concentrations, cardiac markers, cardiopulmonary and lung function testing and the 10-min time trial (TT) performance on a bicycle ergometer as outcome variables. Blood and urine samples were collected pre-, post-, 3 h post- and 24 h post-TT. RESULTS: Mean power output during TT was not different between study arms. Treatment effects regarding lung function (p < 0.001), echocardiographic (left ventricular end-systolic volume p = 0.037; endocardial global longitudinal strain p < 0.001) and metabolic variables (e.g. NR4A2 and ATF3 pathway) were observed without any influence on performance. In female athletes, total serum ß2-agonist concentrations for SAL and FOR were higher. Microarray muscle gene analysis showed a treatment effect for target genes in energy metabolism with strongest effect by SAL + FOR (NR4A2; p = 0.001). Of endocrine variables, follicle-stimulating hormone (3 h Post-Post-TT), luteinizing hormone (3 h Post-Pre-TT) and insulin (Post-Pre-TT) concentrations showed a treatment effect (all p < 0.05). CONCLUSIONS: No endurance performance-enhancing effect for SAL, FOR or SAL + FOR within the permitted dosages compared to PLA was found despite an acute effect on lung and cardiac function as well as endocrine and metabolic variables in healthy participants. The impact of combined ß2-agonists on performance and sex-specific thresholds on the molecular and cardiac level and their potential long-term performance enhancing or health effects have still to be determined. TRIAL REGISTRATION: Registered at Eudra CT with the number: 2015-005598-19 (09.12.2015) and DRKS with number DRKS00010574 (16.11.2021, retrospectively registered).

12.
Front Cell Dev Biol ; 11: 1232120, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397252

RESUMO

[This corrects the article DOI: 10.3389/fcell.2023.1052245.].

13.
Bio Protoc ; 13(12): e4698, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37397797

RESUMO

Expansion microscopy (ExM) is a powerful technique to overcome the diffraction limit of light microscopy that can be applied in both tissues and cells. In ExM, samples are embedded in a swellable polymer gel to physically expand the sample and isotropically increase resolution in x, y, and z. By systematic exploration of the ExM recipe space, we developed a novel ExM method termed Ten-fold Robust Expansion Microscopy (TREx) that, as the original ExM method, requires no specialized equipment or procedures. TREx enables ten-fold expansion of both thick mouse brain tissue sections and cultured human cells, can be handled easily, and enables high-resolution subcellular imaging with a single expansion step. Furthermore, TREx can provide ultrastructural context to subcellular protein localization by combining antibody-stained samples with off-the-shelf small molecule stains for both total protein and membranes.

14.
Cancers (Basel) ; 15(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37444554

RESUMO

The worldwide approval of the combination maintenance therapy of olaparib and bevacizumab in advanced high-grade serous ovarian cancer requires complex molecular diagnostic assays that are sufficiently robust for the routine detection of driver mutations in homologous recombination repair (HRR) genes and genomic instability (GI), employing formalin-fixed (FFPE) paraffin-embedded tumor samples without matched normal tissue. We therefore established a DNA-based hybrid capture NGS assay and an associated bioinformatic pipeline that fulfils our institution's specific needs. The assay´s target regions cover the full exonic territory of relevant cancer-related genes and HRR genes and more than 20,000 evenly distributed single nucleotide polymorphism (SNP) loci to allow for the detection of genome-wide allele specific copy number alterations (CNA). To determine GI status, we implemented an %CNA score that is robust across a broad range of tumor cell content (25-85%) often found in routine FFPE samples. The assay was established using high-grade serous ovarian cancer samples for which BRCA1 and BRCA2 mutation status as well as Myriad MyChoice homologous repair deficiency (HRD) status was known. The NOGGO (Northeastern German Society for Gynecologic Oncology) GIS (GI-Score) v1 assay was clinically validated on more than 400 samples of the ENGOT PAOLA-1 clinical trial as part of the European Network for Gynaecological Oncological Trial groups (ENGOT) HRD European Initiative. The "NOGGO GIS v1 assay" performed using highly robust hazard ratios for progression-free survival (PFS) and overall survival (OS), as well a significantly lower dropout rate than the Myriad MyChoice clinical trial assay supporting the clinical utility of the assay. We also provide proof of a modular and scalable routine diagnostic method, that can be flexibly adapted and adjusted to meet future clinical needs, emerging biomarkers, and further tumor entities.

15.
Acta Neuropathol ; 146(3): 387-394, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37452829

RESUMO

Dysautonomia has substantially impacted acute COVID-19 severity as well as symptom burden after recovery from COVID-19 (long COVID), yet the underlying causes remain unknown. Here, we hypothesized that vagus nerves are affected in COVID-19 which might contribute to autonomic dysfunction. We performed a histopathological characterization of postmortem vagus nerves from COVID-19 patients and controls, and detected SARS-CoV-2 RNA together with inflammatory cell infiltration composed primarily of monocytes. Furthermore, we performed RNA sequencing which revealed a strong inflammatory response of neurons, endothelial cells, and Schwann cells which correlated with SARS-CoV-2 RNA load. Lastly, we screened a clinical cohort of 323 patients to detect a clinical phenotype of vagus nerve affection and found a decreased respiratory rate in non-survivors of critical COVID-19. Our data suggest that SARS-CoV-2 induces vagus nerve inflammation followed by autonomic dysfunction which contributes to critical disease courses and might contribute to dysautonomia observed in long COVID.


Assuntos
COVID-19 , Disautonomias Primárias , Humanos , COVID-19/complicações , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda , RNA Viral , Células Endoteliais , Inflamação , Disautonomias Primárias/etiologia , Nervo Vago
16.
Bioinformatics ; 39(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37522865

RESUMO

MOTIVATION: Random forest is a popular machine learning approach for the analysis of high-dimensional data because it is flexible and provides variable importance measures for the selection of relevant features. However, the complex relationships between the features are usually not considered for the selection and thus also neglected for the characterization of the analysed samples. RESULTS: Here we propose two novel approaches that focus on the mutual impact of features in random forests. Mutual forest impact (MFI) is a relation parameter that evaluates the mutual association of the features to the outcome and, hence, goes beyond the analysis of correlation coefficients. Mutual impurity reduction (MIR) is an importance measure that combines this relation parameter with the importance of the individual features. MIR and MFI are implemented together with testing procedures that generate P-values for the selection of related and important features. Applications to one experimental and various simulated datasets and the comparison to other methods for feature selection and relation analysis show that MFI and MIR are very promising to shed light on the complex relationships between features and outcome. In addition, they are not affected by common biases, e.g. that features with many possible splits or high minor allele frequencies are preferred. AVAILABILITY AND IMPLEMENTATION: The approaches are implemented in Version 0.3.3 of the R package RFSurrogates that is available at github.com/AGSeifert/RFSurrogates and the data are available at doi.org/10.25592/uhhfdm.12620.


Assuntos
Aprendizado de Máquina , Algoritmo Florestas Aleatórias , Viés , Frequência do Gene
17.
Int J Pharm ; 642: 123173, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37369288

RESUMO

Dissolvable microneedle array patches offer the possibility to deliver active pharmaceutical ingredients bypassing the gastrointestinal tract by piercing the stratum corneum. Usually, microneedles are produced by micromolding but this often results in a waste of active pharmaceutical ingredient. In this study, inkjet printing was investigated as a manufacturing technology for dissolvable microneedle array patches. A suitable ink for the printing process was developed for lisinopril as a peptidomimetic model drug. The printing process was optimized. Povidone was found to be a promising polymer for the precise and smooth production of dissolvable microneedles. Different patterns of microneedles and blank spaces were successfully printed into one microneedle array patch. It was possible to exactly define the cavities to be filled. The amount of lisinopril was precisely adjusted between 95.14 and 99.26 % of the target dose. The applied method demonstrated the precise dosage opportunities of the inkjet printing methodology for customization and drug waste reduction. Inkjet printing could be used as a precise manufacturing method for personalized microneedle array patches as well as to combine incompatible drug substances in a single patch.


Assuntos
Lisinopril , Agulhas , Sistemas de Liberação de Medicamentos/métodos , Polímeros , Preparações Farmacêuticas , Administração Cutânea , Impressão Tridimensional
19.
Biochim Biophys Acta Mol Cell Res ; 1870(6): 119485, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37150482

RESUMO

Ca2+ signaling is one of the essential signaling systems for T lymphocyte activation, the latter being an essential step in the pathogenesis of autoimmune diseases such as multiple sclerosis (MS). Store-operated Ca2+ entry (SOCE) ensures long lasting Ca2+ signaling and is of utmost importance for major downstream T lymphocyte activation steps, e.g. nuclear localization of the transcription factor 'nuclear factor of activated T cells' (NFAT). 2-Methoxyestradiol (2ME2), an endogenous metabolite of estradiol (E2), blocks nuclear translocation of NFAT. The likely underlying mechanism is inhibition of SOCE, as shown for its synthetic sulfamate ester analogue 2-ethyl-3-sulfamoyloxy-17ß-cyanomethylestra-1,3,5(10)-triene (STX564). Here, we demonstrate that another synthetic bis-sulfamoylated 2ME2 derivative, 2-methoxyestradiol-3,17-O,O-bis-sulfamate (2-MeOE2bisMATE, STX140), an orally bioavailable, multi-targeting anticancer agent and potent steroid sulfatase (STS) inhibitor, antagonized SOCE in T lymphocytes. Downstream events, e.g. secretion of the pro-inflammatory cytokines interferon-γ and interleukin-17, were decreased by STX140 in in vitro experiments. Remarkably, STX140 dosed in vivo completely blocked the clinical disease in both active and transfer experimental autoimmune encephalomyelitis (EAE) in Lewis rats, a T cell-mediated animal model for MS, at a dose of 10 mg/kg/day i.p., whereas neither 2ME2 nor Irosustat, a pure STS inhibitor, showed any effect. The STS inhibitory activity of STX140 is therefore not responsible for its activity in this model. Taken together, inhibition of SOCE by STX140 resulting in full antagonism of clinical symptoms in EAE in the Lewis rat, paired with the known excellent bioavailability and pharmaceutical profile of this drug, open potentially new therapeutic avenues for the treatment of MS.


Assuntos
Encefalomielite Autoimune Experimental , Linfócitos T , Ratos , Animais , 2-Metoxiestradiol , Encefalomielite Autoimune Experimental/tratamento farmacológico , Ratos Endogâmicos Lew , Preparações Farmacêuticas
20.
Eur J Neurol ; 30(8): 2297-2304, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37159495

RESUMO

BACKGROUND AND PURPOSE: This study aimed to investigate if pre-existing neurological conditions, such as dementia and a history of cerebrovascular disease, increase the risk of severe outcomes including death, intensive care unit (ICU) admission and vascular events in patients hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in 2022, when Omicron was the predominant variant. METHODS: A retrospective analysis was conducted of all patients with SARS-CoV-2 infection, confirmed by polymerase chain reaction test, admitted to the University Medical Center Hamburg-Eppendorf from 20 December 2021 until 15 August 2022. In all, 1249 patients were included in the study. In-hospital mortality was 3.8% and the ICU admission rate was 9.9%. Ninety-three patients with chronic cerebrovascular disease and 36 patients with pre-existing all-cause dementia were identified and propensity score matching by age, sex, comorbidities, vaccination status and dexamethasone treatment was performed in a 1:4 ratio with patients without the respective precondition using nearest neighbor matching. RESULTS: Analysis revealed that neither pre-existing cerebrovascular disease nor all-cause dementia increased mortality or the risk for ICU admission. All-cause dementia in the medical history also had no effect on vascular complications under investigation. In contrast, an increased odds ratio for both pulmonary artery embolism and secondary cerebrovascular events was observed in patients with pre-existing chronic cerebrovascular disease and myocardial infarction in the medical history. CONCLUSION: These findings suggest that patients with pre-existing cerebrovascular disease and myocardial infarction in their medical history may be particularly susceptible to vascular complications following SARS-CoV-2 infection with presumed Omicron variant.


Assuntos
COVID-19 , Transtornos Cerebrovasculares , Infarto do Miocárdio , Humanos , Estudos Retrospectivos , COVID-19/complicações , COVID-19/epidemiologia , SARS-CoV-2 , Transtornos Cerebrovasculares/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA