Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
J Immunother Cancer ; 12(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38519053

RESUMO

BACKGROUND: The survival benefit observed in children with neuroblastoma (NB) and minimal residual disease who received treatment with anti-GD2 monoclonal antibodies prompted our investigation into the safety and potential clinical benefits of anti-CD3×anti-GD2 bispecific antibody (GD2Bi) armed T cells (GD2BATs). Preclinical studies demonstrated the high cytotoxicity of GD2BATs against GD2+cell lines, leading to the initiation of a phase I/II study in recurrent/refractory patients. METHODS: The 3+3 dose escalation phase I study (NCT02173093) encompassed nine evaluable patients with NB (n=5), osteosarcoma (n=3), and desmoplastic small round cell tumors (n=1). Patients received twice-weekly infusions of GD2BATs at 40, 80, or 160×106 GD2BATs/kg/infusion complemented by daily interleukin-2 (300,000 IU/m2) and twice-weekly granulocyte macrophage colony-stimulating factor (250 µg/m2). The phase II segment focused on patients with NB at the dose 3 level of 160×106 GD2BATs/kg/infusion. RESULTS: Of the 12 patients enrolled, 9 completed therapy in phase I with no dose-limiting toxicities. Mild and manageable cytokine release syndrome occurred in all patients, presenting as grade 2-3 fevers/chills, headaches, and occasional hypotension up to 72 hours after GD2BAT infusions. GD2-antibody-associated pain was minimal. Median overall survival (OS) for phase I and the limited phase II was 18.0 and 31.2 months, respectively, with a combined OS of 21.1 months. A phase I NB patient had a complete bone marrow response with overall stable disease. In phase II, 10 of 12 patients were evaluable: 1 achieved partial response, and 3 showed clinical benefit with prolonged stable disease. Over 50% of evaluable patients exhibited augmented immune responses to GD2+targets post-GD2BATs, as indicated by interferon-gamma (IFN-γ) EliSpots, Th1 cytokines, and/or chemokines. CONCLUSIONS: This study demonstrated the safety of GD2BATs up to 160×106 cells/kg/infusion. Coupled with evidence of post-treatment endogenous immune responses, our findings support further investigation of GD2BATs in larger phase II clinical trials.


Assuntos
Antineoplásicos , Neuroblastoma , Osteossarcoma , Criança , Humanos , Linfócitos T/patologia , Neuroblastoma/patologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Osteossarcoma/tratamento farmacológico
2.
J Neurooncol ; 166(2): 321-330, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38263486

RESUMO

PURPOSE: The purpose of this study was to determine the safety, feasibility, and immunologic responses of treating grade 4 astrocytomas with multiple infusions of anti-CD3 x anti-EGFR bispecific antibody (EGFRBi) armed T cells (EGFR BATs) in combination with radiation and chemotherapy. METHODS: This phase I study used a 3 + 3 dose escalation design to test the safety and feasibility of intravenously infused EGFR BATs in combination with radiation and temozolomide (TMZ) in patients with newly diagnosed grade 4 astrocytomas (AG4). After finding the feasible dose, an expansion cohort with unmethylated O6-methylguanine-DNA methyltransferase (MGMT) tumors received weekly EGFR BATs without TMZ. RESULTS: The highest feasible dose was 80 × 109 EGFR BATs without dose-limiting toxicities (DLTs) in seven patients. We could not escalate the dose because of the limited T-cell expansion. There were no DLTs in the additional cohort of three patients with unmethylated MGMT tumors who received eight weekly infusions of EGFR BATs without TMZ. EGFR BATs infusions induced increases in glioma specific anti-tumor cytotoxicity by peripheral blood mononuclear cells (p < 0.03) and NK cell activity (p < 0.002) ex vivo, and increased serum concentrations of IFN-γ (p < 0.03), IL-2 (p < 0.007), and GM-CSF (p < 0.009). CONCLUSION: Targeting AG4 with EGFR BATs at the maximum feasible dose of 80 × 109, with or without TMZ was safe and induced significant anti-tumor-specific immune responses. These results support further clinical trials to examine the efficacy of this adoptive cell therapy in patients with MGMT-unmethylated GBM. CLINICALTRIALS: gov Identifier: NCT03344250.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/uso terapêutico , Leucócitos Mononucleares/patologia , Neoplasias Encefálicas/genética , Linfócitos T/patologia , Glioblastoma/tratamento farmacológico , Receptores ErbB , Antineoplásicos Alquilantes/uso terapêutico , Antineoplásicos Alquilantes/farmacologia
3.
Res Sq ; 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37986911

RESUMO

Background: Since treatment of neuroblastoma (NB) with anti-GD2 monoclonal antibodies provides a survival benefit in children with minimal residual disease and our preclinical study shows that anti-CD3 x anti-GD2 bispecific antibody (GD2Bi) armed T cells (GD2BATs) were highly cytotoxic to GD2+ cell lines, we conducted a phase I/II study in recurrent/refractory patients to establish safety and explore the clinical benefit of GD2BATs. Methods: The 3+3 dose escalation study (NCT02173093) phase I involved 9 evaluable patients with NB (n=5), osteosarcoma (OST) (n=3), and desmoplastic small round cell tumors (DSRCT) (n=1) with twice weekly infusions of GD2BATs at 40, 80, or 160 x 106 GD2BATs/kg/infusion with daily interleukin 2 (300,000 IU/m2) and twice weekly granulocyte-macrophage colony stimulating factor (250 µg/m2). Phase II portion of the trial was conducted in patients with NB at the dose 3 level of 160 x 106 GD2BATs/kg/infusion but failed to enroll the planned number of patients. Results: Nine of 12 patients in the phase I completed therapy. There were no dose limiting toxicities (DLTs). All patients developed mild and manageable cytokine release syndrome (CRS) with grade 2-3 fevers/chills, headaches, and occasional hypotension up to 72 hours after GD2BAT infusions. GD2-antibody associated pain was not significant in this study. The median OS for patients in the Phase I and limited Phase II was 18.0 and 31.2 months, respectively, whereas the combined OS was 21.1 months. There was a complete bone marrow response with overall stable disease in one of the phase I patients with NB. Ten of 12 phase II patients were evaluable for response: 1 had partial response. Three additional patients were deemed to have clinical benefit with prolonged stable disease. More than 50% of evaluable patients showed augmented immune responses to GD2+ targets after GD2BATs as measured by interferon-gamma (IFN-γ) EliSpots, Th1 cytokines, and/or chemokines. Conclusions: Our study demonstrated safety of up to 160 x 106 cells/kg/infusion of GD2BATs. Combined with evidence for the development of post treatment endogenous immune responses, this data supports further investigation of GD2 BATs in larger Phase II clinical trials.

4.
Front Immunol ; 14: 1225610, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37646042

RESUMO

CD30 is expressed on Hodgkin lymphomas (HL), many non-Hodgkin lymphomas (NHLs), and non-lymphoid malignancies in children and adults. Tumor expression, combined with restricted expression in healthy tissues, identifies CD30 as a promising immunotherapy target. An anti-CD30 antibody-drug conjugate (ADC) has been approved by the FDA for HL. While anti-CD30 ADCs and chimeric antigen receptors (CARs) have shown promise, their shortcomings and toxicities suggest that alternative treatments are needed. We developed novel anti-CD30 x anti-CD3 bispecific antibodies (biAbs) to coat activated patient T cells (ATCs) ex vivo prior to autologous re-infusions. Our goal is to harness the dual specificity of the biAb, the power of cellular therapy, and the safety of non-genetically modified autologous T cell infusions. We present a comprehensive characterization of the CD30 binding and tumor cell killing properties of these biAbs. Five unique murine monoclonal antibodies (mAbs) were generated against the extracellular domain of human CD30. Resultant anti-CD30 mAbs were purified and screened for binding specificity, affinity, and epitope recognition. Two lead mAb candidates with unique sequences and CD30 binding clusters that differ from the ADC in clinical use were identified. These mAbs were chemically conjugated with OKT3 (an anti-CD3 mAb). ATCs were armed and evaluated in vitro for binding, cytokine production, and cytotoxicity against tumor lines and then in vivo for tumor cell killing. Our lead mAb was subcloned to make a Master Cell Bank (MCB) and screened for binding against a library of human cell surface proteins. Only huCD30 was bound. These studies support a clinical trial in development employing ex vivo-loading of autologous T cells with this novel biAb.


Assuntos
Anticorpos Biespecíficos , Ataxia Telangiectasia , Doença de Hodgkin , Linfoma não Hodgkin , Adulto , Criança , Humanos , Animais , Camundongos , Muromonab-CD3 , Anticorpos Biespecíficos/farmacologia , Anticorpos Monoclonais
5.
Clin Cancer Res ; 29(1): 122-133, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36255393

RESUMO

PURPOSE: A phase II study was conducted to evaluate the safety and efficacy of the combination of HER2 bispecific antibody (HER2Bi)-armed activated T cells (HER2 BAT) and programmed death 1 inhibitor, pembrolizumab. PATIENTS AND METHODS: Patients with metastatic castration-resistant prostate cancer (mCRPC) with 0 to 1 performance status and normal liver, kidney, and marrow function, pre- or post-docetaxel chemotherapy were eligible. Primary endpoint was 6-month progression-free survival (PFS). Peripheral blood mononuclear cells were obtained by a single apheresis, shipped to University of Virginia, activated with OKT3 and expanded for 14 days in IL2, harvested, and armed with HER2Bi and cryopreserved. HER2 BATs were infused twice weekly for 4 weeks and pembrolizumab was administered every 21 days for a maximum duration of 6 months starting 1 to 3 weeks prior to HER2 BATs infusion. RESULTS: Fourteen patients were enrolled with a median age of 69 (range 57-82 years) and median PSA of 143.4 (range 8.2-4210 ng/dL). Two patients had peritoneal metastases, 1 had lymph node (LN) only metastases and 11 had bone metastases of which 7 had bone and LN metastases. All were pretreated with androgen receptor axis targeted agents and 7 (50%) had prior docetaxel chemotherapy. The toxicities were grade1-2 infusion reactions with fever, chills, headaches, nausea and/or myalgias. Primary endpoint of 6 month PFS was achieved in 5 of 14 patients (38.5%; 95% confidence interval, 19.5%-76.5%). Median PFS was 5 months and median survival was 31.6 months. CONCLUSIONS: The safety and promising efficacy makes this combination worthy of future investigation in mCRPC.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Docetaxel/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Leucócitos Mononucleares , Linfócitos T , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
6.
ACS Infect Dis ; 9(1): 122-139, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36475632

RESUMO

CXCL10 is a pro-inflammatory chemokine produced by the host in response to microbial infection. In addition to canonical, receptor-dependent actions affecting immune-cell migration and activation, CXCL10 has also been found to directly kill a broad range of pathogenic bacteria. Prior investigations suggest that the bactericidal effects of CXCL10 occur through two distinct pathways that compromise the cell envelope. These observations raise the intriguing notion that CXCL10 features a separable pair of antimicrobial domains. Herein, we affirm this possibility through peptide-based mapping and structure/function analyses, which demonstrate that discrete peptides derived from the N- and C-terminal regions of CXCL10 mediate bacterial killing. The N-terminal derivative, peptide P1, exhibited marked antimicrobial activity against Bacillus anthracis vegetative bacilli and spores, as well as antibiotic-resistant clinical isolates of Klebsiella pneumoniae, Acinetobacter baumannii, Enterococcus faecium, and Staphylococcus aureus, among others. At bactericidal concentrations, peptide P1 had a minimal degree of chemotactic activity, but did not cause red blood cell hemolysis or cytotoxic effects against primary human cells. The C-terminal derivative, peptide P9, exhibited antimicrobial effects, but only against Gram-negative bacteria in low-salt medium─conditions under which the peptide can adopt an α-helical conformation. The introduction of a hydrocarbon staple induced and stabilized α-helicity; accordingly, stapled peptide P9 displayed significantly improved bactericidal effects against both Gram-positive and Gram-negative bacteria in media containing physiologic levels of salt. Together, our findings identify and characterize the antimicrobial regions of CXCL10 and functionalize these novel determinants as discrete peptides with potential therapeutic utility against difficult-to-treat pathogens.


Assuntos
Antibacterianos , Anti-Infecciosos , Humanos , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Quimiocina CXCL10/metabolismo , Quimiocina CXCL10/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Anti-Infecciosos/farmacologia
7.
Front Immunol ; 13: 899468, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389764

RESUMO

The management of relapsed or refractory acute myeloid leukemia (AML) continues to be therapeutically challenging. Non-toxic immunotherapy approaches are needed to provide long-term anti-leukemic effects. The goal of this study was to determine whether activated T cells (ATCs) armed with bispecific antibodies (BiAbs) could target and lyse leukemic and leukemic stem cells (LSCs). Anti-CD3 × anti-CD123 BiAb (CD123Bi) and anti-CD3 × anti-CD33GO (gemtuzumab ozogamicin [GO]) BiAb (CD33GOBi) were used to arm ATCs to produce bispecific antibody armed activated T cells (designated CD123 BATs or CD33GO BATs) to target AML cell lines, peripheral blood mononuclear cells from AML patients, and in vivo treatment of AML in xenogeneic NSG mice engrafted with leukemic cells. BATs exhibited high levels of specific cytotoxicity directed at AML cell lines at low 1:1 or 1:2 effector-to-target (E:T) ratios and secrete Th1 cytokines upon target engagement. In vivo study in AML-engrafted NSG mice showed significantly prolonged survival in mice treated with CD33GO BATs (p < 0.0001) or CD123 BATs (p < 0.0089) compared to ATC-treated control mice. Patient samples containing leukemic blasts and LSCs when treated with CD33GO BATs or CD123 BATs for 18 h showed a significant reduction (50%-100%; p < 0.005) in blasts and 75%-100% reduction in LSCs (p < 0.005) in most cases compared to unarmed ATCs. This approach may provide a potent and non-toxic strategy to target AML blasts and LSCs and enhance chemo-responsiveness in older patients who are likely to develop recurrent diseases.


Assuntos
Anticorpos Biespecíficos , Leucemia Mieloide Aguda , Camundongos , Animais , Anticorpos Biespecíficos/uso terapêutico , Leucócitos Mononucleares/metabolismo , Subunidade alfa de Receptor de Interleucina-3 , Terapia Baseada em Transplante de Células e Tecidos
8.
Microbiol Spectr ; 10(1): e0256021, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35196802

RESUMO

The COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an unprecedented event requiring frequent adaptation to changing clinical circumstances. Convalescent immune plasma (CIP) is a promising treatment that can be mobilized rapidly in a pandemic setting. We tested whether administration of SARS-CoV-2 CIP at hospital admission could reduce the rate of ICU transfer or 28-day mortality or alter levels of specific antibody responses before and after CIP infusion. In a single-arm phase II study, patients >18 years-old with respiratory symptoms with confirmed COVID-19 infection who were admitted to a non-ICU bed were administered two units of CIP within 72 h of admission. Levels of SARS-CoV-2 detected by PCR in the respiratory tract and circulating anti-SARS-CoV-2 antibody titers were sequentially measured before and after CIP transfusion. Twenty-nine patients were transfused high titer CIP and 48 contemporaneous comparable controls were identified. All classes of antibodies to the three SARS-CoV-2 target proteins were significantly increased at days 7 and 14 post-transfusion compared with baseline (P < 0.01). Anti-nucleocapsid IgA levels were reduced at day 28, suggesting that the initial rise may have been due to the contribution of CIP. The groups were well-balanced, without statistically significant differences in demographics or co-morbidities or use of remdesivir or dexamethasone. In participants transfused with CIP, the rate of ICU transfer was 13.8% compared to 27.1% for controls with a hazard ratio 0.506 (95% CI 0.165-1.554), and 28-day mortality was 6.9% compared to 10.4% for controls, hazard ratio 0.640 (95% CI 0.124-3.298). IMPORTANCE Transfusion of high-titer CIP to non-critically ill patients early after admission with COVID-19 respiratory disease was associated with significantly increased anti-SARS-CoV-2 specific antibodies (compared to baseline) and a non-significant reduction in ICU transfer and death (compared to controls). This prospective phase II trial provides a suggestion that the antiviral effects of CIP from early in the COVID-19 pandemic may delay progression to critical illness and death in specific patient populations. This study informs the optimal timing and potential population of use for CIP in COVID-19, particularly in settings without access to other interventions, or in planning for future coronavirus pandemics.


Assuntos
Anticorpos Antivirais/administração & dosagem , COVID-19/imunologia , COVID-19/terapia , Estado Terminal/terapia , Plasma/imunologia , SARS-CoV-2/imunologia , Idoso , COVID-19/mortalidade , Feminino , Humanos , Imunização Passiva , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , SARS-CoV-2/genética , Soroterapia para COVID-19
9.
Oncogene ; 41(14): 2054-2068, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35177811

RESUMO

Increased tumor infiltrating lymphocytes (TIL) are associated with improved patient responses to immunotherapy. As a result, there is interest in enhancing lymphocyte trafficking particularly to colon cancers since the majority are checkpoint blockade-resistant and microsatellite stable. Here, we demonstrate that activated T-cells (ATC) armed with anti-CD3 x anti-EGFR bispecific antibody increases TIL and mediate anti-tumor cytotoxicity while decreasing tumor cell viability. Furthermore, treatment induces endogenous anti-tumor immunity that resisted tumor rechallenge and increased memory T-cell subsets in the tumor. When combined with targeted tumor expression of the tumor necrosis factor superfamily member LIGHT, activated T-cell proliferation and infiltration were further enhanced, and human colorectal tumor regressions were observed. Our data indicate that tumor-targeted armed bispecific antibody increases TIL trafficking and is a potentially potent strategy that can be paired with combination immunotherapy to battle microsatellite stable colon cancer. SIGNIFICANCE: Enhancing trafficking of tumor infiltrating lymphocytes (TILs) to solid tumors has been shown to improve outcomes. Unfortunately, few strategies have been successful in the clinical setting for solid tumors, particularly for "cold" microsatellite stable colon cancers. In order to address this gap in knowledge, this study combined TNFSF14/LIGHT immunomodulation with a bispecific antibody armed with activated T-cells targeted to the tumor. This unique T-cell trafficking strategy successfully generated anti-tumor immunity in a microsatellite stable colon cancer model, stimulated T-cell infiltration, and holds promise as a combination immunotherapy for treating advanced and metastatic colorectal cancer.


Assuntos
Anticorpos Biespecíficos , Neoplasias do Colo , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Complexo CD3 , Neoplasias do Colo/tratamento farmacológico , Humanos , Imunoterapia , Linfócitos T
10.
Ann Med ; 54(1): 1047-1057, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36799362

RESUMO

Introduction: Bispecific antibody (BiAb)-armed activated T cells (BATs) comprise an adoptive T cell therapy platform for treating cancer. Arming activated T cells (ATC) with anti-CD3 x anti-tumour associated antigen (TAA) BiAbs converts ATC into non-major histocompatibility complex (MHC)-restricted anti-tumour cytotoxic T lymphocytes (CTLs). Binding of target antigens via the BiAb bridge enables specific anti-tumour cytotoxicity, Th1 cytokines release, and T cell proliferation. Clinical trials in breast, prostate, and pancreatic cancer using BATs armed with chemically heteroconjugated BiAbs demonstrated safety, feasibility, induction of anti-tumour immune responses and potential increases in overall survival (OS).Objectives: The primary objective of this study was to develop a recombinant BiAb that confers enhanced anti-tumour activity of BATs against a broad range of solid tumours.Methods: A recombinant anti-epidermal growth factor receptor (EGFR) x anti-CD3 (OKT3) BiAb (rEGFRBi) was designed and expressed in CHO cells, used to arm ATC (rEGFR-BATs), and tested for specific cytotoxicity against breast, pancreatic and prostate cancers and glioblastoma.Results: rEGFR-BATs exhibit remarkably enhanced specific cytotoxicity and T1 cytokine secretion against a wide range of solid tumour cell lines vs. their respective chemically-heteroconjugated BATs.Conclusion: rEGFR-BATs may provide a "universal" T cell therapy for treating a wide range of solid tumours. KEY MESSAGEA (Gly4Ser)6 linker between the variable light and heavy chains of an scFv fused to the N-terminus of a heavy chain antibody confers unexpected stability to the heavy chain fusion protein and supports the efficient expression of the bispecific antibody.Arming of activated T cells with the rEGFRBi greatly enhances the relative cytotoxicity and Th1 cytokine secretion of theT cells relative to a chemically heteroconjugated BiAbs.rEGFR-BATs are promising candidates for the treatment of a broad range of solid tumours.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Animais , Cricetinae , Humanos , Masculino , Anticorpos Biespecíficos/uso terapêutico , Anticorpos Biespecíficos/farmacologia , Cricetulus , Citocinas , Linfócitos T/metabolismo , Neoplasias/imunologia , Neoplasias/terapia
11.
Expert Opin Biol Ther ; 22(8): 1017-1027, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33896311

RESUMO

INTRODUCTION: There are more than two dozen bispecific antibodies (BsAbs) in development with a variety of designs which are relevant to breast cancer. The field of BsAbs for breast cancer includes agents that co-direct immune recognition of the cancer cell, target unique cancer antigens, and target the microenvironment. BsAbs are being developed for use as antibody-drug conjugates and as homing signals for engineered T-cells. AREAS COVERED: This review covers potential targets for bispecific antibodies, agents in pre-clinical development, agents in clinical trials, combinatorial therapies, and future directions. EXPERT OPINION: There is no BsAb approval expected for breast cancer in the near term, but late-stage trials are underway. Future BsAb roles in breast cancer are possible given unmet needs in estrogen receptor+ disease, residual disease, and de-escalating chemotherapy use. The HER2+ space shows hints of success for BsAbs, but is already crowded. Areas of unmet need still exist.


Assuntos
Anticorpos Biespecíficos , Neoplasias da Mama , Anticorpos Biespecíficos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Imunoterapia , Linfócitos T , Microambiente Tumoral
12.
J Hematol Oncol ; 14(1): 204, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34886888

RESUMO

Resistance to anti-cancer monoclonal antibody (mAb) therapy remains a clinical challenge. Previous work in our laboratory has shown that T cell help in the form of interleukin-2 maintains long-term NK cell viability and NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC). Lack of such T cell help may be a potential mechanism for resistance to mAb therapy. Here, we evaluate whether concomitant treatment with anti-CD3 × anti-cancer bispecific antibodies (bsAbs) can overcome this resistance by enhancing T cell help, and thereby maintaining long-term NK cell-mediated ADCC. Normal donor peripheral blood mononuclear cells were depleted of T cells, replenished with defined numbers of autologous T cells (from 0.75 to 50%) and co-cultured with mono-/bispecific antibody-treated target tumor cells for up to 7 days. At low T cell concentrations, bsAb-activated T cells (mainly CD4+ T cells) were more effective than resting T cells at maintaining NK cell viability and ADCC. Brief (4 h to 2 day) bsAb exposure was sufficient to enhance long-term ADCC by NK cells. These findings raise the hypothesis that local T cell activation mediated by systemic treatment with anti-CD3 X anti-cancer bsAb may enhance the anti-tumor efficacy of monospecific mAbs that mediate their primary therapeutic effect via NK-mediated ADCC.


Assuntos
Anticorpos Biespecíficos/farmacologia , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Antineoplásicos Imunológicos/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Células Cultivadas , Humanos , Células Matadoras Naturais/imunologia , Linfócitos T/imunologia
13.
Front Immunol ; 12: 690437, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34290709

RESUMO

Adoptive T cell therapies for solid tumors is challenging. We generated metabolically enhanced co-activated-T cells by transducing intracellular co-stimulatory (41BB, ICOS or ICOS-27) and CD3ζ T cell receptor signaling domains followed by arming with bispecific antibodies (BiAbs) to produce armed "Headless CAR T cells" (hCART). Various hCART armed with BiAb directed at CD3ϵ and various tumor associated antigens were tested for: 1) specific cytotoxicity against solid tumors targets; 2) repeated and dual sequential cytotoxicity; 3) survival and cytotoxicity under in vitro hypoxic condition; and 4) cytokine secretion. The 41BBζ transduced hCART (hCART41BBζ) armed with HER2 BiAb (HER2 hCART41BBζ) or armed with EGFR BiAb (EGFR hCART41BBζ) killed multiple tumor lines significantly better than control T cells and secreted Th1 cytokines/chemokines upon tumor engagement at effector to target ratio (E:T) of 2:1 or 1:1. HER2 hCART serially killed tumor targets up to 14 days. Sequential targeting of EGFR or HER2 positive tumors with HER2 hCART41BBζ followed by EGFR hCART41BBζ showed significantly increased cytotoxicity compared single antigen targeting and continue to kill under in vitro hypoxic conditions. In summary, metabolically enhanced headless CAR T cells are effective serial killers of tumor targets, secrete cytokines and chemokines, and continue to kill under in vitro hypoxic condition.


Assuntos
Anticorpos Biespecíficos/genética , Neoplasias da Mama/terapia , Imunoterapia Adotiva , Receptor ErbB-2/antagonistas & inibidores , Receptores de Antígenos Quiméricos/genética , Linfócitos T/transplante , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Técnicas de Cocultura , Citocinas/metabolismo , Citotoxicidade Imunológica , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/imunologia , Feminino , Humanos , Células MCF-7 , Fenótipo , Receptor ErbB-2/imunologia , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Hipóxia Tumoral , Microambiente Tumoral
14.
Oncoimmunology ; 10(1): 1930883, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34123574

RESUMO

In this study, we investigated the ability of bispecific antibody armed activated T cells to target drug resistant pancreatic cancer cells and whether or not "priming" these resistant cancer cells with bispecific antibody armed activated T cells could enhance subsequent responsiveness to chemotherapeutic drugs. Chemotherapeutic responses for pancreatic cancer are either limited or the tumors develop resistance to chemotherapy regimens. The impetus for this study was the remarkable clinical response seen in our earlier phase I/II clinical trial: a pancreatic cancer patient with drug resistant tumors who showed progression of disease following three infusions of anti-CD3 x anti-EGFR bispecific antibody armed activated T cells (EGFR BATs) was restarted on the initial low dose of 5-fluorouracil showed complete response, suggesting that BATs infusions may have sensitized patient's tumor for chemoresponsiveness. In the current study, we tested the hypothesis that BATs can sensitize tumors for chemoresponsiveness. Gemcitabine or cisplatin-resistant MiaPaCa-2 and L3.6 cell lines were effectively targeted by EGFR BATs. Priming of drug sensitive or resistant cells with EGFR BATs followed by retargeting with lower concentrations of 50% inhibitory concentration of gemcitabine or cisplatin showed enhanced cytotoxicity. Gemcitabine or cisplatin-resistant cell lines show an increased proportion of CD44+/CD24+/EpCAM+ cancer stem like cells as well as an increased number of ABC transporter ABCG2 positive cells compared to the parental cell lines. These data suggest that bispecific antibody armed activated T cells can target and kill chemo-resistant tumor cells and also markedly augment subsequent chemotherapeutic responsiveness, possibly by modulating the expression of ABC transporters.


Assuntos
Anticorpos Biespecíficos , Neoplasias Pancreáticas , Anticorpos Biespecíficos/farmacologia , Complexo CD3 , Humanos , Células-Tronco Neoplásicas , Neoplasias Pancreáticas/tratamento farmacológico , Linfócitos T
15.
J Immunother Cancer ; 9(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34117114

RESUMO

BACKGROUND: Metastatic human epidermal growth receptor II (HER2) negative breast cancer remains incurable. Our phase I study showed that anti-CD3 × anti-HER2 bispecific antibody armed activated T cells (HER2 BATs) may be effective against HER2-tumors. This phase II trial evaluates the efficacy and immune responses of HER2 BATs given to patients with metastatic HER2-estrogen and/or progesterone receptor positive (HR+) and triple negative breast cancer (TNBC) as immune consolidation after chemotherapy. The primary objective of this study was to increase the traditional median time to progression after failure of first-line therapy of 2-4 months with the secondary endpoints of increasing overall survival (OS) and immune responses. METHODS: HER2- metastatic breast cancer (MBC) patients received 3 weekly infusions of HER2 BATs and a boost after 12 weeks. RESULTS: This phase II study included 24 HER2-HR+ and 8 TNBC patients who received a mean of 3.75 and 2.4 lines of prior chemotherapy, respectively. Eight of 32 evaluable patients were stable at 4 months after the first infusion. There were no dose limiting toxicities. Tumor markers decreased in 13 of 23 (56.5%) patients who had tumor markers. The median OS was 13.1 (95% CI 8.6 to 17.4), 15.2 (95% CI 8.6 to 19.8), and 12.3 (95% CI 2.1 to 17.8) months for the entire group, HER2-HR+, and TNBC patients, respectively. Median OS for patients with chemotherapy-sensitive and chemotherapy-resistant disease after chemotherapy was 14.6 (9.6-21.8) and 8.6 (3.3-17.3) months, respectively. There were statistically significant increases in interferon-γ immunospots, Th1 cytokines, Th2 cytokines, and chemokines after HER2 BATs infusions. CONCLUSIONS: In heavily pretreated HER2-patients, immune consolidation with HER2 BATs after chemotherapy appears to increase the proportion of patients who were stable at 4 months and the median OS for both groups as well as increased adaptive and innate antitumor responses. Future studies combining HER2 BATs with checkpoint inhibitors or other immunomodulators may improve clinical outcomes.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Complexo CD3/antagonistas & inibidores , Quimioterapia de Consolidação/métodos , Linfócitos T/imunologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Adulto , Idoso , Anticorpos Biespecíficos/farmacologia , Feminino , Humanos , Pessoa de Meia-Idade , Metástase Neoplásica
16.
Cancer Cell ; 39(5): 604-606, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33974858

RESUMO

The long-held paradigm that tumor suppressors are un-targetable in cancer therapy is challenged by a study published in Science. This recent work elegantly describes and characterizes a p53 mutant peptide-selective TCR-mimic antibody and its co-targeting T cell-activating bispecific antibody to eliminate neoantigen-expressing tumors.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Humanos , Linfócitos T
17.
J Immunother Cancer ; 9(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33986124

RESUMO

BACKGROUND: T cell-based immunotherapies using chimeric antigen receptors (CAR) or bispecific antibodies (BsAb) have produced impressive responses in hematological malignancies. However, major hurdles remained, including cytokine release syndrome, neurotoxicity, on-target off-tumor effects, reliance on autologous T cells, and failure in most solid tumors. BsAb armed T cells offer a safe alternative. METHODS: We generated ex vivo armed T cells (EATs) using IgG-[L]-scFv-platformed BsAb, where the anti-CD3 (huOKT3) scFv was attached to the light chain of a tumor-binding IgG. BsAb density on EAT, in vitro cytotoxicity, cytokine release, in vivo trafficking into tumors, and their antitumor activities were evaluated in multiple cancer cell lines and patient-derived xenograft mouse models. The efficacy of EATs after cryopreservation was studied, and gamma delta (γδ) T cells were investigated as unrelated alternative effector T cells. RESULTS: The antitumor potency of BsAb armed T cells was substantially improved using the IgG-[L]-scFv BsAb platform. When compared with separate BsAb and T cell injection, EATs released less TNF-α, and infiltrated tumors faster, while achieving robust antitumor responses. The in vivo potency of EAT therapy depended on BsAb dose for arming, EAT cell number per injection, total number of EAT doses, and treatment schedule intensity. The antitumor efficacy of EATs was preserved following cryopreservation, and EATs using γδ T cells were safe and as effective as αß T cell-EATs. CONCLUSIONS: EATs exerted potent antitumor activities against a broad spectrum of human cancer targets with remarkable safety. The antitumor potency of EATs depended on BsAb dose, cell number and total dose, and schedule. EATs were equally effective after cryopreservation, and the feasibility of third-party γδ-EATs offered an alternative for autologous T cell sources.


Assuntos
Anticorpos Biespecíficos/imunologia , Citocinas/metabolismo , Imunoterapia Adotiva , Linfócitos Intraepiteliais/transplante , Ativação Linfocitária , Linfócitos do Interstício Tumoral/transplante , Neoplasias/terapia , Animais , Anticorpos Biespecíficos/genética , Anticorpos Biespecíficos/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Técnicas de Cocultura , Citotoxicidade Imunológica , Humanos , Linfócitos Intraepiteliais/imunologia , Linfócitos Intraepiteliais/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Camundongos Knockout , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/metabolismo , Fenótipo , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
18.
medRxiv ; 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33619508

RESUMO

RATIONALE: The COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an unprecedented event requiring rapid adaptation to changing clinical circumstances. Convalescent immune plasma (CIP) is a promising treatment that can be mobilized rapidly in a pandemic setting. OBJECTIVES: We tested whether administration of SARS-CoV-2 CIP at hospital admission could reduce the rate of ICU transfer or 28 day mortality. METHODS: In a single-arm phase II study, patients >18 years-old with respiratory symptoms documented with COVID-19 infection who were admitted to a non-ICU bed were administered two units of CIP within 72 hours of admission. Detection of respiratory tract SARS-CoV-2 by polymerase chain reaction and circulating anti-SARS-CoV-2 antibody titers were measured before and at time points after CIP transfusion. MEASUREMENTS AND MAIN RESULTS: Twenty-nine patients were transfused CIP and forty-eight contemporaneous controls were identified with comparable baseline characteristics. Levels of anti-SARS-CoV-2 IgG, IgM, and IgA anti-spike, anti-receptor-binding domain, and anti-nucleocapsid significantly increased from baseline to post-transfusion for all proteins tested. In patients transfused with CIP, the rate of ICU transfer was 13.8% compared to 27.1% for controls with a hazard ratio 0.506 (95% CI 0.165-1.554), and 28-day mortality was 6.9% compared to 10.4% for controls, hazard ratio 0.640 (95% CI 0.124-3.298). CONCLUSIONS: Transfusion of high-titer CIP to patients early after admission with COVID-19 respiratory disease was associated with reduced ICU transfer and 28-day mortality but was not statistically significant. Follow up randomized trials may inform the use of CIP for COVID-19 or future coronavirus pandemics.

19.
Cancer Immunol Immunother ; 70(3): 633-656, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32865605

RESUMO

Adoptive transfer of Bispecific antibody Armed activated T cells (BATs) showed promising anti-tumor activity in clinical trials in solid tumors. The cytotoxic activity of BATs occurs upon engagement with tumor cells via the bispecific antibody (BiAb) bridge, which stimulates BATs to release cytotoxic molecules, cytokines, chemokines, and other signaling molecules extracellularly. We hypothesized that the release of BATs Induced Tumor-Targeting Effectors (TITE) by this complex interaction of T cells, bispecific antibody, and tumor cells may serve as a potent anti-tumor and immune-activating immunotherapeutic approach. In a 3D tumorsphere model, TITE showed potent cytotoxic activity against multiple breast cancer cell lines compared to control conditioned media (CM): Tumor-CM (T-CM), BATs-CM (B-CM), BiAb Armed PBMC-CM (BAP-CM) or PBMC-CM (P-CM). Multiplex cytokine analysis showed high levels of Th1 cytokines and chemokines; phospho-protein signaling array data suggest that the prominent JAK1/STAT1 pathway may be responsible for the induction and release of Th1 cytokines/chemokines in TITE. In xenograft breast cancer models, IV injections of 10× concentrated TITE (3×/week for 3 weeks; 150 µl TITE/injection) was able to inhibit tumor growth significantly (ICR/scid, p < 0.003; NSG p < 0.008) compared to the control mice. We tested the key components of the TITE for immune activating and anti-tumor activity individually and in combinations, the combination of IFN-γ, TNF-α and MIP-1ß recapitulates the key activities of the TITE. In summary, master mix of active components of BATs-Tumor complex-derived TITE can provide a clinically controllable cell-free platform to target various tumor types regardless of the heterogeneous nature of the tumor cells and mutational tumor.


Assuntos
Citotoxicidade Imunológica , Imunomodulação , Ativação Linfocitária/imunologia , Neoplasias/imunologia , Neoplasias/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/farmacologia , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores , Linhagem Celular Tumoral , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Imunofenotipagem , Camundongos , Neoplasias/diagnóstico , Neoplasias/terapia , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Aesthet Surg J ; 41(12): 1359-1364, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33165542

RESUMO

BACKGROUND: Granzyme B (GrB) is a serine protease secreted, along with pore-forming perforin, by cytotoxic lymphocytes to mediate apoptosis in target cells. GrB has been detected in tumor cells associated with systemic and breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) but its potential use for detection of early BIA-ALCL has not been fully investigated. OBJECTIVES: Prompted by the increased incidence of BIA-ALCL, the aim of this study was to assess GrB as a new biomarker to detect early disease in malignant seromas and to better understand the nature of the neoplastic cell. METHODS: A Human XL Cytokine Discovery Magnetic Luminex 45-plex Fixed Panel Performance Assay was used to compare cytokine levels in cell culture supernatants of BIA-ALCL and other T-cell lymphomas, as well as malignant and benign seromas surrounding breast implants. Immunohistochemistry was employed to localize GrB to cells in seromas and capsular infiltrates. RESULTS: Differences in GrB concentrations between malignant and benign seromas were significant (P < 0.001). GrB was found in and around apoptotic tumor cells, suggesting that the protease may be involved in tumor cell death. CONCLUSIONS: GrB is a useful marker for early detection of malignant seromas and to identify tumor cells in seromas and capsular infiltrates. Because there is an overlap between the lowest concentrations of soluble GrB in malignant seromas and the highest concentrations of GrB in benign seromas, it is recommended that GrB be used only as part of a panel of biomarkers for the screening and early detection of BIA-ALCL.


Assuntos
Implante Mamário , Implantes de Mama , Neoplasias da Mama , Linfoma Anaplásico de Células Grandes , Biomarcadores , Implantes de Mama/efeitos adversos , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/cirurgia , Feminino , Granzimas , Humanos , Linfoma Anaplásico de Células Grandes/diagnóstico , Linfoma Anaplásico de Células Grandes/etiologia , Linfoma Anaplásico de Células Grandes/cirurgia , Seroma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA