Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Evodevo ; 5: 24, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25009737

RESUMO

Segmentation is a feature of the body plans of a number of diverse animal groupings, including the annelids, arthropods and chordates. However, it has been unclear whether or not these different manifestations of segmentation are independently derived or have a common origin. Central to this issue is whether or not there are common developmental mechanisms that establish segmentation and the evolutionary origins of these processes. A fruitful way to address this issue is to consider how segmentation in vertebrates is directed. During vertebrate development three different segmental systems are established: the somites, the rhombomeres and the pharyngeal arches. In each an iteration of parts along the long axis is established. However, it is clear that the formation of the somites, rhombomeres or pharyngeal arches have little in common, and as such there is no single segmentation process. These different segmental systems also have distinct evolutionary histories, thus highlighting the fact that segmentation can and does evolve independently at multiple points. We conclude that the term segmentation indicates nothing more than a morphological description and that it implies no mechanistic similarity. Thus it is probable that segmentation has arisen repeatedly during animal evolution.

2.
Neural Dev ; 9: 14, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24929424

RESUMO

BACKGROUND: The thalamus is often defined as the 'gateway to consciousness', a feature that is supported by the specific connectivity and electrophysiological properties of its neurons. Inhibitory GABAergic neurons are required for the dynamic gating of information passing through the thalamus. The high degree of heterogeneity among thalamic GABA neurons suggests that, during embryonic development, alternative differentiation programmes exist to guide the acquisition of inhibitory neuron subtype identity. RESULTS: Taking advantage of the accessibility of the developing chick embryo, we have used in ovo manipulations of gene expression to test the role of candidate transcription factors in controlling GABAergic neuronal subtype identity in the developing thalamus. CONCLUSIONS: In this study, we describe two alternative differentiation programmes for GABAergic neurogenesis in the thalamus and identify Helt and Dlx2 as key transcription factors that are sufficient to direct neuronal progenitors along a specific differentiation pathway at the expense of alternative lineage choices. Furthermore, we identify Calb2, a gene encoding for the GABA subtype marker calretinin as a target of the transcription factor Sox14. This work is a step forward in our understanding of how GABA neuron diversity in the thalamus is achieved during development and will help future investigation of the molecular mechanisms that lead up to the acquisition of different synaptic targets and electrophysiological features of mature thalamic inhibitory neurons.


Assuntos
Neurônios GABAérgicos/metabolismo , Neurogênese/genética , Tálamo/embriologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Embrião de Galinha , Neurônios GABAérgicos/classificação , Proteínas de Homeodomínio/metabolismo , Camundongos , Proteínas Repressoras/metabolismo , Fatores de Transcrição SOXB2/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
3.
F1000Res ; 2: 148, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24358859

RESUMO

In neurodegenerative conditions and following brain trauma it is not understood why neurons die while astrocytes and microglia survive and adopt pro-inflammatory phenotypes. We show here that the damaged adult brain releases diffusible factors that can kill cortical neurons and we have identified histone H1 as a major extracellular candidate that causes neurotoxicity and activation of the innate immune system. Extracellular core histones H2A, H2B H3 and H4 were not neurotoxic. Innate immunity in the central nervous system is mediated through microglial cells and we show here for the first time that histone H1 promotes their survival, up-regulates MHC class II antigen expression and is a powerful microglial chemoattractant. We propose that when the central nervous system is degenerating, histone H1 drives a positive feedback loop that drives further degeneration and activation of immune defences which can themselves be damaging. We suggest that histone H1 acts as an antimicrobial peptide and kills neurons through mitochondrial damage and apoptosis.

4.
Proc Natl Acad Sci U S A ; 110(41): E3919-26, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24065827

RESUMO

During embryonic development, the presumptive GABAergic rostral thalamus (rTh) and glutamatergic caudal thalamus (cTh) are induced by Sonic hedgehog (Shh) signaling from the zona limitans intrathalamica (ZLI) at the rostral border of the thalamic primordium. We found that these inductions are limited to the neuroepithelium between the ZLI and the forebrain-midbrain boundary, suggesting a prepattern that limits thalamic competence. We hypothesized that this prepattern is established by the overlapping expression of two transcription factors: Iroquois-related homeobox gene 3 (Irx3) posterior to the ZLI, and paired box gene 6 (Pax6) anterior to the forebrain-midbrain boundary. Consistent with this assumption, we show that misexpression of Irx3 in the prethalamus or telencephalon results in ectopic induction of thalamic markers in response to Shh, that it functions as a transcriptional repressor in this context, and that antagonizing its function in the diencephalon attenuates thalamic specification. Similarly, misexpression of Pax6 in the midbrain together with Shh pathway activation results in ectopic induction of cTh markers in clusters of cells that fail to integrate into tectal layers and of atypical long-range projections, whereas antagonizing Pax6 function in the thalamus disrupts cTh formation. However, rTh markers are negatively regulated by Pax6, which itself is down-regulated by Shh from the ZLI in this area. Our results demonstrate that the combinatorial expression of Irx3 and Pax6 endows cells with the competence for cTh formation, whereas Shh-mediated down-regulation of Pax6 is required for rTh formation. Thus, thalamus induction and patterning depends both on a prepattern of Irx3 and Pax6 expression that establishes differential cellular competence and on Shh signaling from the ZLI organizer.


Assuntos
Proteínas Aviárias/metabolismo , Indução Embrionária/fisiologia , Proteínas do Olho/metabolismo , Neurônios GABAérgicos/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição Box Pareados/metabolismo , Proteínas Repressoras/metabolismo , Tálamo/embriologia , Fatores de Transcrição/metabolismo , Animais , Embrião de Galinha , Clonagem Molecular , Primers do DNA/genética , Eletroporação , Imunofluorescência , Ácido Glutâmico/metabolismo , Hibridização In Situ , Fator de Transcrição PAX6 , Tálamo/citologia
5.
Neuron ; 75(4): 648-62, 2012 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-22920256

RESUMO

Intrinsically photosensitive retinal ganglion cells (ipRGCs) and their nuclear targets in the subcortical visual shell (SVS) are components of the non-image-forming visual system, which regulates important physiological processes, including photoentrainment of the circadian rhythm. While ipRGCs have been the subject of much recent research, less is known about their central targets and how they develop to support specific behavioral functions. We describe Sox14 as a marker to follow the ontogeny of the SVS and find that the complex forms from two narrow stripes of Dlx2-negative GABAergic progenitors in the early diencephalon through sequential waves of tangential migration. We characterize the requirement for Sox14 to orchestrate the correct distribution of neurons among the different nuclei of the network and describe how Sox14 expression is required both to ensure robustness in circadian entrainment and for masking of motor activity.


Assuntos
Ritmo Circadiano/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Células Ganglionares da Retina/fisiologia , Fatores de Transcrição SOXB2/metabolismo , Células-Tronco/fisiologia , Vias Visuais/fisiologia , Ácido gama-Aminobutírico/metabolismo , Sistema y+ de Transporte de Aminoácidos/metabolismo , Animais , Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Temperatura Corporal/genética , Movimento Celular/genética , Distribuição de Qui-Quadrado , Ritmo Circadiano/genética , Diencéfalo/citologia , Diencéfalo/embriologia , Diencéfalo/crescimento & desenvolvimento , Embrião de Mamíferos , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio , Masculino , Camundongos , Camundongos Knockout , Atividade Motora/genética , Mutação/genética , Neurogênese/genética , Técnicas de Cultura de Órgãos , Estimulação Luminosa , Reflexo/genética , Fatores de Transcrição SOXB2/genética , Fatores de Transcrição/deficiência , Transdução Genética/métodos , Vias Visuais/citologia
6.
Annu Rev Neurosci ; 35: 347-67, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22462542

RESUMO

The foundation for the anatomical and functional complexity of the vertebrate central nervous system is laid during embryogenesis. After Spemann's organizer and its derivatives have endowed the neural plate with a coarse pattern along its anteroposterior and mediolateral axes, this basis is progressively refined by the activity of secondary organizers within the neuroepithelium that function by releasing diffusible signaling factors. Dorsoventral patterning is mediated by two organizer regions that extend along the dorsal and ventral midlines of the entire neuraxis, whereas anteroposterior patterning is controlled by several discrete organizers. Here we review how these secondary organizers are established and how they exert their signaling functions. Organizer signals come from a surprisingly limited set of signaling factor families, indicating that the competence of target cells to respond to those signals plays an important part in neural patterning.


Assuntos
Sistema Nervoso Central/crescimento & desenvolvimento , Morfogênese/fisiologia , Organizadores Embrionários/fisiologia , Transdução de Sinais/fisiologia , Animais , Evolução Biológica , Sistema Nervoso Central/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Modelos Neurológicos , Neurogênese/fisiologia , Organizadores Embrionários/metabolismo
7.
PLoS Biol ; 9(12): e1001218, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22180728

RESUMO

Initial axial patterning of the neural tube into forebrain, midbrain, and hindbrain primordia occurs during gastrulation. After this patterning phase, further diversification within the brain is thought to proceed largely independently in the different primordia. However, mechanisms that maintain the demarcation of brain subdivisions at later stages are poorly understood. In the alar plate of the caudal forebrain there are two principal units, the thalamus and the pretectum, each of which is a developmental compartment. Here we show that proper neuronal differentiation of the thalamus requires Lhx2 and Lhx9 function. In Lhx2/Lhx9-deficient zebrafish embryos the differentiation process is blocked and the dorsally adjacent Wnt positive epithalamus expands into the thalamus. This leads to an upregulation of Wnt signaling in the caudal forebrain. Lack of Lhx2/Lhx9 function as well as increased Wnt signaling alter the expression of the thalamus specific cell adhesion factor pcdh10b and lead subsequently to a striking anterior-posterior disorganization of the caudal forebrain. We therefore suggest that after initial neural tube patterning, neurogenesis within a brain compartment influences the integrity of the neuronal progenitor pool and border formation of a neuromeric compartment.


Assuntos
Padronização Corporal/genética , Proteínas com Homeodomínio LIM/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurogênese/fisiologia , Prosencéfalo/embriologia , Fatores de Transcrição/fisiologia , Proteínas Wnt/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Animais , Caderinas/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas com Homeodomínio LIM/deficiência , Proteínas com Homeodomínio LIM/genética , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Tubo Neural/fisiologia , Protocaderinas , Transdução de Sinais/fisiologia , Tálamo/embriologia , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética
8.
Dev Biol ; 352(2): 341-52, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21315708

RESUMO

The midbrain-hindbrain boundary (MHB) acts as an organiser/signalling centre to pattern tectal and cerebellar compartments. Cells in adjacent compartments must be distinct from each other for boundary formation to occur at the interface. Here we have identified the leucine-rich repeat (LRR) neuronal 1 (Lrrn1) protein as a key regulator of this process in chick. The Lrrn family is orthologous to the Drosophila tartan/capricious (trn/caps) family. Differential expression of trn/caps promotes an affinity difference and boundary formation between adjacent compartments in a number of contexts; for example, in the wing, leg and eye imaginal discs. Here we show that Lrrn1 is expressed in midbrain cells but not in anterior hindbrain cells. Lrrn1 is down-regulated in the anterior hindbrain by the organiser signalling molecule FGF8, thereby creating a differential affinity between these two compartments. Lrrn1 is required for the formation of MHB--loss of function leads to a loss of the morphological constriction and loss of Fgf8. Cells overexpressing Lrrn1 violate the boundary and result in a loss of cell restriction between midbrain and hindbrain compartments. Lrrn1 also regulates the glycosyltransferase Lunatic Fringe, a modulator of Notch signalling, maintaining its expression in midbrain cells which is instrumental in MHB boundary formation. Thus, Lrrn1 provides a link between cell affinity/compartment segregation, and cell signalling to specify boundary cell fate.


Assuntos
Proteínas Aviárias/metabolismo , Mesencéfalo/embriologia , Mesencéfalo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Rombencéfalo/embriologia , Rombencéfalo/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas Aviárias/genética , Padronização Corporal , Agregação Celular , Embrião de Galinha , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Mesencéfalo/citologia , Proteínas do Tecido Nervoso/genética , Organizadores Embrionários/embriologia , Organizadores Embrionários/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rombencéfalo/citologia , Transdução de Sinais , Transfecção
9.
Nat Neurosci ; 13(11): 1380-7, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20935645

RESUMO

To better understand hereditary spastic paraplegia (HSP), we characterized the function of atlastin, a protein that is frequently involved in juvenile forms of HSP, by analyzing loss- and gain-of-function phenotypes in the developing zebrafish. We found that knockdown of the gene for atlastin (atl1) caused a severe decrease in larval mobility that was preceded by abnormal architecture of spinal motor axons and was associated with a substantial upregulation of the bone morphogenetic protein (BMP) signaling pathway. Overexpression analyses confirmed that atlastin inhibits BMP signaling. In primary cultures of zebrafish spinal neurons, Atlastin partially colocalized with type I BMP receptors in late endosomes distributed along neurites, which suggests that atlastin may regulate BMP receptor trafficking. Finally, genetic or pharmacological inhibition of BMP signaling was sufficient to rescue the loss of mobility and spinal motor axon defects of atl1 morphants, emphasizing the importance of fine-tuning the balance of BMP signaling for vertebrate motor axon architecture and stability.


Assuntos
Axônios/fisiologia , Proteínas Morfogenéticas Ósseas/metabolismo , Movimento Celular/fisiologia , Neurônios Motores/citologia , Transdução de Sinais/fisiologia , Medula Espinal/citologia , Animais , Animais Geneticamente Modificados , Comportamento Animal , Proteínas Morfogenéticas Ósseas/genética , Células Cultivadas , Embrião não Mamífero , Endossomos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Glicoproteínas/genética , Proteínas de Fluorescência Verde/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Larva , RNA Mensageiro/fisiologia , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tubulina (Proteína)/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
10.
Trends Neurosci ; 33(8): 373-80, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20541814

RESUMO

The thalamus is a central brain region that plays a crucial role in distributing incoming sensory information to appropriate regions of the cortex. The thalamus develops in the posterior part of the embryonic forebrain, where early cell fate decisions are controlled by a local signaling center - the mid-diencephalic organizer - which forms at the boundary between prospective prethalamus and thalamus. In this review we discuss recent observations of early thalamic development in zebrafish, chick, and mouse embryos, that reveal a conserved set of interactions between homeodomain transcription factors. These interactions position the organizer along the neuraxis. The most prominent of the organizer's signals, Sonic hedgehog, is necessary for conferring regional identity on the prethalamus and thalamus and for patterning their differentiation.


Assuntos
Tálamo/embriologia , Fatores de Transcrição/metabolismo , Animais , Padronização Corporal/genética , Diferenciação Celular/genética , Movimento Celular/genética , Embrião de Galinha , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Transdução de Sinais/genética , Tálamo/metabolismo , Fatores de Transcrição/genética , Peixe-Zebra
11.
Proc Natl Acad Sci U S A ; 106(47): 19895-900, 2009 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-19903880

RESUMO

During vertebrate brain development, the onset of neuronal differentiation is under strict temporal control. In the mammalian thalamus and other brain regions, neurogenesis is regulated also in a spatially progressive manner referred to as a neurogenetic gradient, the underlying mechanism of which is unknown. Here we describe the existence of a neurogenetic gradient in the zebrafish thalamus and show that the progression of neurogenesis is controlled by dynamic expression of the bHLH repressor her6. Members of the Hes/Her family are known to regulate proneural genes, such as Neurogenin and Ascl. Here we find that Her6 determines not only the onset of neurogenesis but also the identity of thalamic neurons, marked by proneural and neurotransmitter gene expression: loss of Her6 leads to premature Neurogenin1-mediated genesis of glutamatergic (excitatory) neurons, whereas maintenance of Her6 leads to Ascl1-mediated production of GABAergic (inhibitory) neurons. Thus, the presence or absence of a single upstream regulator of proneural gene expression, Her6, leads to the establishment of discrete neuronal domains in the thalamus.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Neurogênese/fisiologia , Neurônios/fisiologia , Tálamo/citologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Técnicas de Silenciamento de Genes , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Tálamo/fisiologia , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/genética
12.
Dev Biol ; 336(2): 280-92, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19836367

RESUMO

The epibranchial placodes generate the neurons of the geniculate, petrosal, and nodose cranial sensory ganglia. Previously, it has been shown that bone morphogenetic proteins (BMPs) are involved in the formation of these structures. However, it has been unclear as to whether BMP signalling has an ongoing function in directing the later development of the epibranchial placodes, and how this signalling is regulated. Here, we demonstrate that BMPs maintain placodal neurogenesis and that their activity is modulated by a member of the Cerberus/Dan family of BMP antagonists, Protein Related to Dan and Cerberus (PRDC). We find that Bmp4 is expressed in the epibranchial placodes while Bmp7 and PRDC are expressed in the pharyngeal pouches. The timing and regional expression of these three genes suggest that BMP7 is involved in inducing placode neurogenesis and BMP4 in maintaining it and that BMP activity is modulated by PRDC. To investigate this hypothesis, we have performed both gain- and loss- of-function experiments with PRDC and find that it can modulate the BMP signals that induce epibranchial neurogenesis: a gain of PRDC function results in a loss of Bmp4 and hence placode neurogenesis is inhibited; conversely, a loss of PRDC function induces ectopic Bmp4 and an expansion of placode neurogenesis. This modulation is therefore necessary for the number and positioning of the epibranchial neurons.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas/fisiologia , Transdução de Sinais/fisiologia , Animais , Sequência de Bases , Embrião de Galinha , Clonagem Molecular , Primers do DNA , Hibridização In Situ , Faringe/embriologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Xenopus laevis
13.
Neural Dev ; 4: 35, 2009 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-19732418

RESUMO

BACKGROUND: Wnt signalling regulates multiple aspects of brain development in vertebrate embryos. A large number of Wnts are expressed in the embryonic forebrain; however, it is poorly understood which specific Wnt performs which function and how they interact. Wnts are able to activate different intracellular pathways, but which of these pathways become activated in different brain subdivisions also remains enigmatic. RESULTS: We have compiled the first comprehensive spatiotemporal atlas of Wnt pathway gene expression at critical stages of forebrain regionalisation in the chick embryo and found that most of these genes are expressed in strikingly dynamic and complex patterns. Several expression domains do not respect proposed compartment boundaries in the developing forebrain, suggesting that areal identities are more dynamic than previously thought. Using an in ovo electroporation approach, we show that Wnt4 expression in the thalamus is negatively regulated by Sonic hedgehog (Shh) signalling from the zona limitans intrathalamica (ZLI), a known organising centre of forebrain development. CONCLUSION: The forebrain is exposed to a multitude of Wnts and Wnt inhibitors that are expressed in a highly dynamic and complex fashion, precluding simple correlative conclusions about their respective functions or signalling mechanisms. In various biological systems, Wnts are antagonised by Shh signalling. By demonstrating that Wnt4 expression in the thalamus is repressed by Shh from the ZLI we reveal an additional level of interaction between these two pathways and provide an example for the cross-regulation between patterning centres during forebrain regionalisation.


Assuntos
Proteínas Aviárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Prosencéfalo/embriologia , Prosencéfalo/metabolismo , Proteínas Wnt/metabolismo , Animais , Proteínas Aviárias/genética , Embrião de Galinha , Diencéfalo/embriologia , Diencéfalo/metabolismo , Eletroporação , Espaço Extracelular/metabolismo , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Hedgehog/metabolismo , Hibridização In Situ , Espaço Intracelular/metabolismo , Transdução de Sinais , Tálamo/embriologia , Tálamo/metabolismo , Fatores de Tempo , Proteínas Wnt/genética
15.
Neural Dev ; 4: 27, 2009 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-19602272

RESUMO

BACKGROUND: Capricious is a Drosophila adhesion molecule that regulates specific targeting of a subset of motor neurons to their muscle target. We set out to identify whether one of its vertebrate homologues, Lrrn2, might play an analogous role in the chick. RESULTS: We have shown that Lrrn2 is expressed from early development in the prospective rhombomere 4 (r4) of the chick hindbrain. Subsequently, its expression in the hindbrain becomes restricted to a specific group of motor neurons, the branchiomotor neurons of r4, and their pre-muscle target, the second branchial arch (BA2), along with other sites outside the hindbrain. Misexpression of the signalling molecule Sonic hedgehog (Shh) via in ovo electroporation results in upregulation of Lrrn2 exclusively in r4, while the combined expression of Hoxb1 and Shh is sufficient to induce ectopic Lrrn2 in r1/2. Misexpression of Lrrn2 in r2/3 results in axonal rerouting from the r2 exit point to the r4 exit point and BA2, suggesting a direct role in motor axon guidance. CONCLUSION: Lrrn2 acts downstream of Hoxb1 and plays a role in the selective targeting of r4 motor neurons to BA2.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas Hedgehog/metabolismo , Proteínas de Homeodomínio/metabolismo , Neurônios Motores/metabolismo , Rombencéfalo/citologia , Fatores Etários , Animais , Moléculas de Adesão Celular Neuronais/genética , Movimento Celular , Embrião de Galinha , Rombencéfalo/embriologia , Transdução de Sinais/fisiologia
16.
Neural Dev ; 4: 6, 2009 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-19208226

RESUMO

BACKGROUND: The Hox family of homeodomain transcription factors comprises pivotal regulators of cell specification and identity during animal development. However, despite their well-defined roles in the establishment of anteroposterior pattern and considerable research into their mechanism of action, relatively few target genes have been identified in the downstream regulatory network. We have sought to investigate this issue, focussing on the developing hindbrain and the cranial motor neurons that arise from this region. The reiterated anteroposterior compartments of the developing hindbrain (rhombomeres (r)) are normally patterned by the combinatorial action of distinct Hox genes. Alteration in the normal pattern of Hox cues in this region results in a transformation of cellular identity to match the remaining Hox profile, similar to that observed in Drosophila homeotic transformations. RESULTS: To define the repertoire of genes regulated in each rhombomere, we have analysed the transcriptome of each rhombomere from wild-type mouse embryos and not those where pattern is perturbed by gain or loss of Hox gene function. Using microarray and bioinformatic methodologies in conjunction with other confirmatory techniques, we report here a detailed and comprehensive set of potential Hox target genes in r2, r3, r4 and r5. We have demonstrated that the data produced are both fully reflective and predictive of rhombomere identity and, thus, may represent some the of Hox targets. These data have been interrogated to generate a list of candidate genes whose function may contribute to the generation of neuronal subtypes characteristic of each rhombomere. Interestingly, the data can also be classified into genetic motifs that are predicted by the specific combinations of Hox genes and other regulators of hindbrain anteroposterior identity. The sets of genes described in each or combinations of rhombomeres span a wide functional range and suggest that the Hox genes, as well as other regulatory inputs, exert their influence across the full spectrum of molecular machinery. CONCLUSION: We have performed a systematic survey of the transcriptional status of individual segments of the developing mouse hindbrain and identified hundreds of previously undescribed genes expressed in this region. The functional range of the potential candidate effectors or upstream modulators of Hox activity suggest multiple unexplored mechanisms. In particular, we present evidence of a potential new retinoic acid signalling system in ventral r4 and propose a model for the refinement of identity in this region. Furthermore, the rhombomeres demonstrate a molecular relationship to each other that is consistent with known observations about neurogenesis in the hindbrain. These findings give the first genome-wide insight into the complexity of gene expression during patterning of the developing hindbrain.


Assuntos
Expressão Gênica/genética , Genes Homeobox/genética , Neurônios Motores/metabolismo , Rombencéfalo/crescimento & desenvolvimento , Análise de Variância , Animais , Biologia Computacional , Embrião de Mamíferos , Genes Homeobox/fisiologia , Hibridização In Situ , Camundongos , Plasmídeos/genética , Reação em Cadeia da Polimerase , Rombencéfalo/anatomia & histologia , Rombencéfalo/metabolismo
17.
F1000 Biol Rep ; 1: 1, 2009 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-20948677

RESUMO

A surprisingly small number of signalling pathways are used reiteratively during neural development, eliciting very different responses depending on the cellular context. Thus, the way a neural cell responds to a given signal is as important as the signal itself and this responsiveness, also called competence, changes with time. Here we describe recent advances in elucidating the signalling pathways that operate in brain development.

19.
Neural Dev ; 2: 25, 2007 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-17999760

RESUMO

BACKGROUND: The developing vertebrate brain is patterned first by global signalling gradients that define crude anteroposterior and dorsoventral coordinates, and subsequently by local signalling centres (organisers) that refine cell fate assignment within pre-patterned regions. The interface between the prethalamus and the thalamus, the zona limitans intrathalamica (ZLI), is one such local signalling centre that is essential for the establishment of these major diencephalic subdivisions by secreting the signalling factor Sonic hedgehog. Various models for ZLI formation have been proposed, but a thorough understanding of how this important local organiser is established is lacking. RESULTS: Here, we describe tissue explant experiments in chick embryos aimed at characterising the roles of different forebrain areas in ZLI formation. We found that: the ZLI becomes specified unexpectedly early; flanking regions are required for its characteristic morphogenesis; ZLI induction can occur independently from ventral tissues; interaction between any prechordal and epichordal neuroepithelial tissue anterior to the midbrain-hindbrain boundary is able to generate a ZLI; and signals from the dorsal diencephalon antagonise ZLI formation. We further show that a localised source of retinoic acid in the dorsal diencephalon is a likely candidate to mediate this inhibitory signal. CONCLUSION: Our results are consistent with a model where planar, rather than vertical, signals position the ZLI at early stages of neural development and they implicate retinoic acid as a novel molecular cue that determines its dorsoventral extent.


Assuntos
Padronização Corporal/fisiologia , Diencéfalo/embriologia , Diencéfalo/metabolismo , Neurônios/metabolismo , Transdução de Sinais/fisiologia , Tretinoína/metabolismo , Animais , Transplante de Tecido Encefálico/métodos , Embrião de Galinha , Coturnix , Diencéfalo/citologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Inibidores do Crescimento/metabolismo , Proteínas Hedgehog/metabolismo , Mesencéfalo/citologia , Mesencéfalo/embriologia , Mesencéfalo/metabolismo , Tubo Neural/citologia , Tubo Neural/embriologia , Tubo Neural/metabolismo , Neurônios/citologia , Técnicas de Cultura de Órgãos , Rombencéfalo/citologia , Rombencéfalo/embriologia , Rombencéfalo/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Tálamo/citologia , Tálamo/embriologia , Tálamo/metabolismo , Quimeras de Transplante
20.
Neural Dev ; 2: 22, 2007 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-17973992

RESUMO

BACKGROUND: The Drosophila leucine-rich repeat proteins Tartan (TRN) and Capricious (CAPS) mediate cell affinity differences during compartition of the wing imaginal disc. This study aims to identify and characterize the expression of a chick orthologue of TRN/CAPS and examine its potential function in relation to compartment boundaries in the vertebrate central nervous system. RESULTS: We identified a complementary DNA clone encoding Leucine-rich repeat neuronal 1 (Lrrn1), a single-pass transmembrane protein with 12 extracellular leucine-rich repeats most closely related to TRN/CAPS. Lrrn1 is dynamically expressed during chick development, being initially localized to the neural plate and tube, where it is restricted to the ventricular layer. It becomes downregulated in boundaries following their formation. In the mid-diencephalon, Lrrn1 expression prefigures the position of the anterior boundary of the zona limitans intrathalamica (ZLI). It becomes progressively downregulated from the presumptive ZLI just before the onset of expression of the signalling molecule Sonic hedgehog (Shh) within the ZLI. In the hindbrain, downregulation at rhombomere boundaries correlates with the emergence of specialized boundary cell populations, in which it is subsequently reactivated. Immunocolocalization studies confirm that Lrrn1 protein is endocytosed from the plasma membrane and is a component of the endosomal system, being concentrated within the early endosomal compartment. CONCLUSION: Chick Lrrn1 is expressed in ventricular layer neuroepithelial cells and is downregulated at boundary regions, where neurogenesis is known to be delayed, or inhibited. The timing of Lrrn1 downregulation correlates closely with the activation of signaling molecule expression at these boundaries. This expression is consistent with the emergence of secondary organizer properties at boundaries and its endosomal localisation suggests that Lrrn1 may regulate the subcellular localisation of specific components of signalling or cell-cell recognition pathways in neuroepithelial cells.


Assuntos
Padronização Corporal/genética , Encéfalo/embriologia , Encéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Encéfalo/citologia , Compartimento Celular/fisiologia , Linhagem Celular Tumoral , Embrião de Galinha , Diencéfalo/citologia , Diencéfalo/embriologia , Diencéfalo/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Endocitose/fisiologia , Endossomos/metabolismo , Células HeLa , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/isolamento & purificação , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/isolamento & purificação , Neurônios/citologia , Transporte Proteico/fisiologia , Rombencéfalo/citologia , Rombencéfalo/embriologia , Rombencéfalo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA