Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Acta Diabetol ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888636

RESUMO

AIMS: The existence of insulin- or glucagon-expressing extra-islet endocrine cells scattered in the pancreas is well-known, but they have been sparsely characterized. The aim of this study was to examine their density, distribution, transcription-factor expression, and mitotic activity in young non-diabetic subjects. METHODS: Multispectral imaging was used to examine PDX1, ARX, Ki67, insulin and glucagon in extra-islet endocrine cells in pancreatic tissue from organ donors aged 1-25 years. RESULTS: Extra-islet insulin- or glucagon-positive cells were frequent in all donors (median 17.3 and 22.9 cells/mm2 respectively), with an insulin:glucagon cell ratio of 0.9. The density was similar regardless of age. PDX1 localized mainly to insulin-, and ARX mainly to glucagon-positive cells but, interestingly, many of the cells were negative for both transcription factors. Double-hormone-positive cells were rare but found in all age groups, as were insulin-positive cells expressing ARX and glucagon-positive cells expressing PDX1. Extra-islet endocrine cells with Ki67 expression were present but rare (0-2%) in all age groups. CONCLUSIONS: Extra-islet endocrine cells are more frequent than islets. The preserved extra-islet cell density during pancreas volume-expansion from childhood- to adulthood indicates that new cells are formed, possibly from replication as cells with mitotic activity were discovered. The lack of transcription-factor expression in many cells indicates that they are immature, newly formed or plastic. This, together with the mitotic activity, suggests that these cells could play an important role in the expansion of beta-cell mass in situations of increasing demand, or in the turnover of the endocrine cell population.

2.
Virchows Arch ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922355

RESUMO

The presence of remaining insulin-positive cells in type 1 diabetes (T1D) is well-known. These cells are part of islets or appear as extra-islet insulin-positive cells scattered in the exocrine parenchyma. The latter are poorly described, and the presence of scattered endocrine cells expressing other islet hormones than insulin has not been explored. This study aimed to compare the extra-islet insulin- or glucagon-positive cells concerning their frequency, transcription-factor expression, and mitotic activity in subjects with and without T1D. Multispectral imaging was used to examine extra-islet cells by staining for insulin, glucagon, ARX, PDX1, and Ki67. This was done in well-preserved pancreatic tissue obtained from heart-beating organ donors with or without T1D. In three T1D donors, lobes with insulin-containing islets (ICI) were found. Within these, a higher frequency of extra-islet insulin-positive cells was observed compared to lobes with insulin-deficient islets (IDI). Increased frequency of glucagon-positive extra-islet cells was observed in donors with T1D (median 53 cells/mm2) when compared with non-diabetic donors (11 cells/mm2, p = 0.004). Proliferating endocrine cells were present in donors with, and without T1D, as demonstrated by Ki67-positive staining (0-3% of the cells expressing insulin or glucagon). The reduced frequency of extra-islet insulin-positive cells in lobes with IDI in donors with T1D suggests that the pathological mechanism causing beta cell demise in T1D affects entire lobes. The presence of an increased frequency of glucagon-positive extra-islet cells supports the notion of a preserved capacity to regenerate the endocrine pancreas in donors with T1D.

3.
J Phys Chem A ; 127(34): 7121-7131, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37590497

RESUMO

Metal centers in transition metal-ligand complexes occur in a variety of oxidation states causing their redox activity and therefore making them relevant for applications in physics and chemistry. The electronic state of these complexes can be studied by X-ray absorption spectroscopy, which is, however, due to the complex spectral signature not always straightforward. Here, we study the electronic structure of gas-phase cationic manganese acetylacetonate complexes Mn(acac)1-3+ using X-ray absorption spectroscopy at the metal center and ligand constituents. The spectra are well reproduced by multiconfigurational wave function theory, time-dependent density functional theory as well as parameterized crystal field and charge transfer multiplet simulations. This enables us to get detailed insights into the electronic structure of ground-state Mn(acac)1-3+ and extract empirical parameters such as crystal field strength and exchange coupling from X-ray excitation at both the metal and ligand sites. By comparison to X-ray absorption spectra of neutral, solvated Mn(acac)2,3 complexes, we also show that the effect of coordination on the L3 excitation energy, routinely used to identify oxidation states, can contribute about 40-50% to the observed shift, which for the current study is 1.9 eV per oxidation state.

4.
Phys Chem Chem Phys ; 25(15): 10447-10459, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37016943

RESUMO

Photochemistry and photophysics processes involve structures far from equilibrium. In these reactions, there is often strong coupling between nuclear and electronic degrees of freedom. For first-row transition metals, Kß X-ray emission spectroscopy (XES) is a sensitive probe of electronic structure due to the direct overlap between the valence orbitals and the 3p hole in the final state. Here the sensitivity of Kß mainline (Kß1,3) XES to structural dynamics is analyzed by simulating spectral changes along the excited state dynamics of an iron photosensitizer [FeII(bmip)2]2+ [bmip = 2,6-bis(3-methyl-imidazole-1-ylidine)-pyridine], using both restricted active space (RAS) multiconfigurational wavefunction theory and a one-electron orbital-energy approach in density-functional theory (1-DFT). Both methods predict a spectral blue-shift with increasing metal-ligand distance, which changes the emission intensity for any given detection energy. These results support the suggestion that the [FeII(bmip)2]2+ femtosecond Kß XES signal shows oscillations due to coherent wavepacket dynamics. Based on the RAS results, the sensitivity to structural dynamics is twice as high for Kß compared to Kα, with the drawback of a lower signal-to-noise ratio. Kß sensitivity is favored by a larger spectral blue-shift with increasing metal-ligand distance and larger changes in spectral shape. Comparing the two simulations methods, 1-DFT predicts smaller energy shifts and lower sensitivity, likely due to missing final-state effects. The simulations can be used to design and interpret XES probes of non-equilibrium structures to gain mechanistic insights in photocatalysis.

5.
PLoS One ; 17(10): e0276942, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36315525

RESUMO

AIMS: The transcriptome of different dissociated pancreatic islet cells has been described in enzymatically isolated islets in both health and disease. However, the isolation, culturing, and dissociation procedures likely affect the transcriptome profiles, distorting the biological conclusions. The aim of the current study was to characterize the cells of the islets of Langerhans from subjects with and without type 1 diabetes in a way that reflects the in vivo situation to the highest possible extent. METHODS: Islets were excised using laser capture microdissection directly from frozen pancreatic tissue sections obtained from organ donors with (n = 7) and without (n = 8) type 1 diabetes. Transcriptome analysis of excised samples was performed using AmpliSeq. Consecutive pancreatic sections were used to estimate the proportion of beta-, alpha-, and delta cells using immunofluorescence and to examine the presence of CD31 positive endothelial regions using immunohistochemistry. RESULTS: The proportion of beta cells in islets from subjects with type 1 diabetes was reduced to 0% according to both the histological and transcriptome data, and several alterations in the transcriptome were derived from the loss of beta cells. In total, 473 differentially expressed genes were found in the islets from subjects with type 1 diabetes. Functional enrichment analysis showed that several of the most upregulated gene sets were related to vasculature and angiogenesis, and histologically, vascular density was increased in subjects with type 1 diabetes. Downregulated in type 1 diabetes islets was the gene set epithelial mesenchymal transition. CONCLUSION: A number of transcriptional alterations are present in islets from subjects with type 1 diabetes. In particular, several gene sets related to vasculature and angiogenesis are upregulated and there is an increased vascular density, suggesting an altered microvasculature in islets from subjects with type 1 diabetes. By studying pancreatic islets extracted directly from snap-frozen pancreatic tissue, this study reflects the in vivo situation to a high degree and gives important insights into islet pathophysiology in type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patologia , Ilhotas Pancreáticas/patologia , Células Secretoras de Insulina/patologia , Pâncreas/patologia , Microvasos/patologia
6.
Inorg Chem ; 61(24): 9104-9118, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35658429

RESUMO

The design of molecular water oxidation catalysts (WOCs) requires a rational approach that considers the intermediate steps of the catalytic cycle, including water binding, deprotonation, storage of oxidizing equivalents, O-O bond formation, and O2 release. We investigated several of these properties for a series of base metal complexes (M = Mn, Fe, Co, Ni) bearing two variants of a pentapyridyl ligand framework, of which some were reported previously to be active WOCs. We found that only [Fe(Py5OMe)Cl]+ (Py5OMe = pyridine-2,6-diylbis[di-(pyridin-2-yl)methoxymethane]) showed an appreciable catalytic activity with a turnover number (TON) = 130 in light-driven experiments using the [Ru(bpy)3]2+/S2O82- system at pH 8.0, but that activity is demonstrated to arise from the rapid degradation in the buffered solution leading to the formation of catalytically active amorphous iron oxide/hydroxide (FeOOH), which subsequently lost the catalytic activity by forming more extensive and structured FeOOH species. The detailed analysis of the redox and water-binding properties employing electrochemistry, X-ray absorption spectroscopy (XAS), UV-vis spectroscopy, and density-functional theory (DFT) showed that all complexes were able to undergo the MIII/MII oxidation, but none was able to yield a detectable amount of a MIV state in our potential window (up to +2 V vs SHE). This inability was traced to (i) the preference for binding Cl- or acetonitrile instead of water-derived species in the apical position, which excludes redox leveling via proton coupled electron transfer, and (ii) the lack of sigma donor ligands that would stabilize oxidation states beyond MIII. On that basis, design features for next-generation molecular WOCs are suggested.

7.
Phys Chem Chem Phys ; 24(6): 3598-3610, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35103264

RESUMO

Manganese-oxo species catalyze key reactions, including C-H bond activation or dioxygen formation in natural photosynthesis. To better understand relevant reaction intermediates, we characterize electronic states and geometric structures of [MnOn]+ manganese-oxo complexes that represent a wide range of manganese oxidation states. To this end, we apply soft X-ray spectroscopy in a cryogenic ion trap, combined with multiconfigurational wavefunction calculations. We identify [MnO2]+ as a rare high-spin manganese(V) oxo complex with key similarities to six-coordinated manganese(V) oxo systems that are proposed as reaction intermediates in catalytic dioxygen bond formation.


Assuntos
Compostos de Manganês , Manganês , Cátions , Óxidos , Raios X
8.
Artigo em Inglês | MEDLINE | ID: mdl-34031141

RESUMO

INTRODUCTION: Despite a reduced function and volume of the exocrine pancreas in type 1 diabetes, the acinar cells remain understudied in type 1 diabetes research. The hypothesis of this study is that the acinar tissue is altered in subjects with type 1 diabetes compared with subjects without diabetes. RESEARCH DESIGN AND METHODS: The cell density, expression of digestive enzymes, and transcriptome of acinar tissue at varying distances from islets were analyzed using histology, immunostaining, and AmpliSeq RNA sequencing of laser capture microdissected tissue. Pancreases examined were from organ donors with or without type 1 diabetes. RESULTS: We demonstrate preserved acinar nuclei density and find no support of acinar atrophy in type 1 diabetes. Staining for digestive enzymes (amylase, lipase, and trypsin) demonstrated an evenly distributed expression in the exocrine parenchyma; although occasional amylase-negative regions appeared in tissue that had been formalin-fixed and paraffin-embedded, this phenomenon was not evident in frozen tissue. Gene set enrichment analysis of whole transcriptome data identified transcriptional alterations in type 1 diabetes that were present in the acinar tissue independent of the distance from islets. Among these, the two most enriched gene sets were Myc Targets V2 and Estrogen Response Early. CONCLUSION: Taken together, these new data emphasize the involvement of the entire pancreas in type 1 diabetes pathology. The alteration of the gene sets Myc Targets V2 and Estrogen Response Early is a possible link to the increased incidence of pancreatic cancer in type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Pâncreas Exócrino , Neoplasias Pancreáticas , Células Acinares , Diabetes Mellitus Tipo 1/genética , Humanos , Pâncreas
9.
PLoS One ; 16(3): e0247888, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33711030

RESUMO

Insulin secretion is impaired with increasing age. In this study, we aimed to determine whether aging induces specific transcriptional changes in human islets. Laser capture microdissection was used to extract pancreatic islet tissue from 37 deceased organ donors aged 1-81 years. The transcriptomes of the extracted islets were analysed using Ion AmpliSeq sequencing. 346 genes that co-vary significantly with age were found. There was an increased transcription of genes linked to senescence, and several aspects of the cell cycle machinery were downregulated with increasing age. We detected numerous genes not linked to aging in previous studies likely because earlier studies analysed islet cells isolated by enzymatic digestion which might affect the islet transcriptome. Among the novel genes demonstrated to correlate with age, we found an upregulation of SPP1 encoding osteopontin. In beta cells, osteopontin has been seen to be protective against both cytotoxicity and hyperglycaemia. In summary, we present a transcriptional profile of aging in human islets and identify genes that could affect disease course in diabetes.


Assuntos
Ilhotas Pancreáticas/metabolismo , Transcriptoma , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Ciclo Celular/genética , Senescência Celular/genética , Criança , Pré-Escolar , Feminino , Perfilação da Expressão Gênica , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Adulto Jovem
10.
J Am Chem Soc ; 143(12): 4569-4584, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33730507

RESUMO

1s2p resonant inelastic X-ray scattering (1s2p RIXS) has proven successful in the determination of the differential orbital covalency (DOC, the amount of metal vs ligand character in each d molecular orbital) of highly covalent centrosymmetric iron environments including heme models and enzymes. However, many reactive intermediates have noncentrosymmetric environments, e.g., the presence of strong metal-oxo bonds, which results in the mixing of metal 4p character into the 3d orbitals. This leads to significant intensity enhancement in the metal K-pre-edge and as shown here, the associated 1s2p RIXS features, which impact their insight into electronic structure. Binuclear oxo bridged high spin Fe(III) complexes are used to determine the effects of 4p mixing on 1s2p RIXS spectra. In addition to developing the analysis of 4p mixing on K-edge XAS and 1s2p RIXS data, this study explains the selective nature of the 4p mixing that also enhances the analysis of L-edge XAS intensity in terms of DOC. These 1s2p RIXS biferric model studies enable new structural insight from related data on peroxo bridged biferric enzyme intermediates. The dimeric nature of the oxo bridged Fe(III) complexes further results in ligand-to-ligand interactions between the Fe(III) sites and angle dependent features just above the pre-edge that reflect the superexchange pathway of the oxo bridge. Finally, we present a methodology that enables DOC to be obtained when L-edge XAS is inaccessible and only 1s2p RIXS experiments can be performed as in many metalloenzyme intermediates in solution.


Assuntos
Compostos Férricos/química , Teoria Quântica , Eletrônica , Estrutura Molecular , Espalhamento de Radiação , Raios X
11.
Dalton Trans ; 50(2): 660-674, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33325945

RESUMO

Developing new transition metal catalysts requires understanding of how both metal and ligand properties determine reactivity. Since metal complexes bearing ligands of the Py5 family (2,6-bis-[(2-pyridyl)methyl]pyridine) have been employed in many fields in the past 20 years, we set out here to understand their redox properties by studying a series of base metal ions (M = Mn, Fe, Co, and Ni) within the Py5OH (pyridine-2,6-diylbis[di-(pyridin-2-yl)methanol]) variant. Both reduced (MII) and the one-electron oxidized (MIII) species were carefully characterized using a combination of X-ray crystallography, X-ray absorption spectroscopy, cyclic voltammetry, and density-functional theory calculations. The observed metal-ligand interactions and electrochemical properties do not always follow consistent trends along the periodic table. We demonstrate that this observation cannot be explained by only considering orbital and geometric relaxation, and that spin multiplicity changes needed to be included into the DFT calculations to reproduce and understand these trends. In addition, exchange reactions of the sixth ligand coordinated to the metal, were analysed. Finally, by including published data of the extensively characterised Py5OMe (pyridine-2,6-diylbis[di-(pyridin-2-yl)methoxymethane])complexes, the special characteristics of the less common Py5OH ligand were extracted. This comparison highlights the non-innocent effect of the distal OH functionalization on the geometry, and consequently on the electronic structure of the metal complexes. Together, this gives a complete analysis of metal and ligand degrees of freedom for these base metal complexes, while also providing general insights into how to control electrochemical processes of transition metal complexes.

12.
Struct Dyn ; 7(4): 044102, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32665965

RESUMO

Recently, coherent structural dynamics in the excited state of an iron photosensitizer was observed through oscillations in the intensity of Kα x-ray emission spectroscopy (XES). Understanding the origin of the unexpected sensitivity of core-to-core transitions to structural dynamics is important for further development of femtosecond time-resolved XES methods and, we believe, generally necessary for interpretation of XES signals from highly non-equilibrium structures that are ubiquitous in photophysics and photochemistry. Here, we use multiconfigurational wavefunction calculations combined with atomic theory to analyze the emission process in detail. The sensitivity of core-to-core transitions to structural dynamics is due to a shift of the minimum energy metal-ligand bond distance between 1s and 2p core-hole states. A key effect is the additional contraction of the non-bonding 3s and 3p orbitals in 1s core-hole states, which decreases electron-electron repulsion and increases overlap in the metal-ligand bonds. The effect is believed to be general and especially pronounced for systems with strong bonds. The important role of 3s and 3p orbitals is consistent with the analysis of radial charge and spin densities and can be connected to the negative chemical shift observed for many transition metal complexes. The XES sensitivity to structural dynamics can be optimized by tuning the emission energy spectrometer, with oscillations up to ±4% of the maximum intensity for the current system. The theoretical predictions can be used to design experiments that separate electronic and nuclear degrees of freedom in ultrafast excited state dynamics.

13.
J Chem Phys ; 153(2): 024114, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32668952

RESUMO

X-ray processes involve interactions with high-energy photons. For these short wavelengths, the perturbing field cannot be treated as constant, and there is a need to go beyond the electric-dipole approximation. The exact semi-classical light-matter interaction operator offers several advantages compared to the multipole expansion such as improved stability and ease of implementation. Here, the exact operator is used to model x-ray scattering in metal K pre-edges. This is a relativistic two-photon process where absorption is dominated by electric-dipole forbidden transitions. With the restricted active space state-interaction approach, spectra can be calculated even for the multiconfigurational wavefunctions including second-order perturbation. However, as the operator itself depends on the transition energy, the cost for evaluating integrals for hundreds of thousands unique transitions becomes a bottleneck. Here, this is solved by calculating the integrals in a molecular-orbital basis that only runs over the active space, combined with a grouping scheme where the operator is the same for close-lying transitions. This speeds up the calculations of single-photon processes and is critical for the modeling of two-photon scattering processes. The new scheme is used to model Kα resonant inelastic x-ray scattering of iron-porphyrin complexes with relevance to studies of heme enzymes, for which the total computational time is reduced by several orders of magnitude with an effect on transition intensities of 0.1% or less.

14.
J Chem Phys ; 152(21): 214117, 2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32505150

RESUMO

MOLCAS/OpenMolcas is an ab initio electronic structure program providing a large set of computational methods from Hartree-Fock and density functional theory to various implementations of multiconfigurational theory. This article provides a comprehensive overview of the main features of the code, specifically reviewing the use of the code in previously reported chemical applications as well as more recent applications including the calculation of magnetic properties from optimized density matrix renormalization group wave functions.

15.
Phys Chem Chem Phys ; 22(16): 8325-8335, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32236271

RESUMO

Hard X-ray spectroscopy selectively probes metal sites in complex environments. Resonant inelastic X-ray scattering (RIXS) makes it is possible to directly study metal-ligand interactions through local valence excitations. Here multiconfigurational wavefunction simulations are used to model valence K pre-edge RIXS for three metal-hexacyanide complexes by coupling the electric dipole-forbidden excitations with dipole-allowed valence-to-core emission. Comparisons between experimental and simulated spectra makes it possible to evaluate the simulation accuracy and establish a best-modeling practice. The calculations give correct descriptions of all LMCT excitations in the spectra, although energies and intensities are sensitive to the description of dynamical electron correlation. The consistent treatment of all complexes shows that simulations can rationalize spectral features. The dispersion in the manganese(iii) spectrum comes from unresolved multiple resonances rather than fluorescence, and the splitting is mainly caused by differences in spatial orientation between holes and electrons. The simulations predict spectral features that cannot be resolved in current experimental data sets and the potential for observing d-d excitations is also explored. The latter can be of relevance for non-centrosymmetric systems with more intense K pre-edges. These ab initio simulations can be used to both design and interpret high-resolution X-ray scattering experiments.

16.
Chem Commun (Camb) ; 56(18): 2703-2706, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32057045

RESUMO

Ferrous chloride complexes [FeIILxCl] commonly attain a high-spin state independently of the supporting ligand(s) and temperature. Herein, we present the first report of a complete spin crossover with T1/2 = 80 K in [FeII(Py5OH)Cl]+ (Py5OH = pyridine-2,6-diylbis[di(pyridin-2-yl)methanol]). Both spin forms of the complex are analyzed by X-ray spectroscopy and DFT calculations.

17.
Nat Commun ; 11(1): 634, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005815

RESUMO

The non-equilibrium dynamics of electrons and nuclei govern the function of photoactive materials. Disentangling these dynamics remains a critical goal for understanding photoactive materials. Here we investigate the photoinduced dynamics of the [Fe(bmip)2]2+ photosensitizer, where bmip = 2,6-bis(3-methyl-imidazole-1-ylidine)-pyridine, with simultaneous femtosecond-resolution Fe Kα and Kß X-ray emission spectroscopy (XES) and X-ray solution scattering (XSS). This measurement shows temporal oscillations in the XES and XSS difference signals with the same 278 fs period oscillation. These oscillations originate from an Fe-ligand stretching vibrational wavepacket on a triplet metal-centered (3MC) excited state surface. This 3MC state is populated with a 110 fs time constant by 40% of the excited molecules while the rest relax to a 3MLCT excited state. The sensitivity of the Kα XES to molecular structure results from a 0.7% average Fe-ligand bond length shift between the 1 s and 2p core-ionized states surfaces.

18.
J Chem Phys ; 152(9): 094305, 2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33480721

RESUMO

In the H2S molecule, the interplay between different core levels can be investigated in great detail in relation to x-ray spectroscopy, which requires a theory for interpretation. Hence, valence and core excitations into the two antibonding molecular orbitals of the H2S molecule have been calculated within a multi-configurational wave function framework. Scanning along the S-H stretching coordinates, we derive potential energy surfaces and transition dipole moments involving the ground state and core and valence excited states. Both valence excitations and the S1s-1 and S2p-1 core excitations show pairs of dissociative and bound electronic states. These pairs of states are nearly degenerate in H2S at the ground state geometry. The close degeneracy together with conical intersections makes H2S an interesting target for x-ray spectroscopy involving ultra-fast dissociation influenced by non-adiabatic transitions and interference. For future investigations with x-ray absorption spectroscopy (XAS) and resonant inelastic x-ray scattering (RIXS), it is valuable to compare H2S with the water molecule, which exhibits state-selective gating to different vibrational modes [R. C. Couto et al., Nat. Commun. 8, 14165 (2017)] in its well-separated O1s-1 core excited states. The dense manifolds of the S2p-1 core excited states will complicate the analysis of Kα edge RIXS, but dynamical effects could be evaluated through detuning and by comparing with L edge XAS. In L edge RIXS, the dynamical effects will be more pronounced due to the longer lifetime of the S2p-1 core excited states compared to the S1s-1 core excited states.

19.
Nat Commun ; 10(1): 4761, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31628306

RESUMO

Stochastic processes are highly relevant in research fields as different as neuroscience, economy, ecology, chemistry, and fundamental physics. However, due to their intrinsic unpredictability, stochastic mechanisms are very challenging for any kind of investigations and practical applications. Here we report the deliberate use of stochastic X-ray pulses in two-dimensional spectroscopy to the simultaneous mapping of unoccupied and occupied electronic states of atoms in a regime where the opacity and transparency properties of matter are subject to the incident intensity and photon energy. A readily transferable matrix formalism is presented to extract the electronic states from a dataset measured with the monitored input from a stochastic excitation source. The presented formalism enables investigations of the response of the electronic structure to irradiation with intense X-ray pulses while the time structure of the incident pulses is preserved.

20.
J Chem Theory Comput ; 15(11): 5925-5964, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31509407

RESUMO

In this Article we describe the OpenMolcas environment and invite the computational chemistry community to collaborate. The open-source project already includes a large number of new developments realized during the transition from the commercial MOLCAS product to the open-source platform. The paper initially describes the technical details of the new software development platform. This is followed by brief presentations of many new methods, implementations, and features of the OpenMolcas program suite. These developments include novel wave function methods such as stochastic complete active space self-consistent field, density matrix renormalization group (DMRG) methods, and hybrid multiconfigurational wave function and density functional theory models. Some of these implementations include an array of additional options and functionalities. The paper proceeds and describes developments related to explorations of potential energy surfaces. Here we present methods for the optimization of conical intersections, the simulation of adiabatic and nonadiabatic molecular dynamics, and interfaces to tools for semiclassical and quantum mechanical nuclear dynamics. Furthermore, the Article describes features unique to simulations of spectroscopic and magnetic phenomena such as the exact semiclassical description of the interaction between light and matter, various X-ray processes, magnetic circular dichroism, and properties. Finally, the paper describes a number of built-in and add-on features to support the OpenMolcas platform with postcalculation analysis and visualization, a multiscale simulation option using frozen-density embedding theory, and new electronic and muonic basis sets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA