Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Plants (Basel) ; 13(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999564

RESUMO

The enhancement of seed germination by using nanoparticles (NPs) holds the potential to elicit the synthesis of more desired compounds with important biomedical applications, such as preventing protein glycation, which occurs in diabetes. Here, we used 7 nm and 100 nm ZnO and 4.5 nm and 16.7 nm Fe2O3 NPs to treat sunflower seeds. We evaluated the effects on germination, total phenolic content, and the anti-glycation potential of extracted polyphenols. Sunflower seeds were allowed to germinate in vitro after soaking in NP solutions of different concentrations. Polyphenols were extracted, dosed, and used in serum albumin glycation experiments. The germination speed of seeds was significantly increased by the 100 nm ZnO NPs and significantly decreased by the 4.5 nm Fe2O3 NPs. The total phenolic content (TPC) of seeds was influenced by the type of NP, as ZnO NPs enhanced TPC, and the size of the NPs, as smaller NPs led to improved parameters. The polyphenols extracted from seeds inhibited protein glycation, especially those extracted from seeds treated with 7 nm ZnO. The usage of NPs impacted the germination speed and total polyphenol content of sunflower seeds, highlighting the importance of NP type and size in the germination process.

2.
Molecules ; 28(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37959703

RESUMO

The purpose of this study was to investigate the synthesis of iron oxide nanoparticles under two different conditions, namely high and low gas flow rates, using laser pyrolysis and to examine the influence of laser power. The attained nanoparticles have been characterised regarding their stability and hydrodynamic dimensions by dispersive light scattering analysis (DLS), structure-X-ray diffraction (XRD), elemental composition-energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS), and morpho-structural characterisation achieved by transmission electron microscopy (TEM) and selected-area electron diffraction (SAED). For a better understanding of the laser power influence, the residence time was also calculated.

3.
Int J Mol Sci ; 23(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35682615

RESUMO

Oxidative stress has been linked with a variety of diseases, being involved in the debut and/or progress of several neurodegenerative disorders. This review intends to summarize some of the findings that correlate the overproduction of reactive oxygen species with the pathophysiology of Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Oxidative stress was also noted to modify the inflammatory response. Even though oxidative stress and neuroinflammation are two totally different pathological events, they are linked and affect one another. Nonetheless, there are still several mechanisms that need to be understood regarding the onset and the progress of neurodegenerative diseases in order to develop efficient therapies. As antioxidants are a means to alter oxidative stress and slow down the symptoms of these neurodegenerative diseases, the most common antioxidants, enzymatic as well as non-enzymatic, have been mentioned in this paper as therapeutic options for the discussed disorders.


Assuntos
Doenças Neurodegenerativas , Antioxidantes/uso terapêutico , Humanos , Doenças Neurodegenerativas/patologia , Doenças Neuroinflamatórias , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio
4.
Medicina (Kaunas) ; 57(5)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066119

RESUMO

Muscular disorders are mainly characterized by progressive skeletal muscle weakness. There are several aspects that can be monitored, which are used to differentiate between the types of muscular disorders, ranging from the targeted muscle up to the mutated gene. An aspect that holds critical importance when managing muscular dystrophies is that most of them exhibit cardiac abnormalities. Therefore, cardiac imaging is an essential part of muscular disorder monitoring and management. In the first section of the review, several cardiac abnormalities are introduced; afterward, different muscular dystrophies' pathogenesis is presented. Not all muscular dystrophies necessarily present cardiac involvement; however, the ones that do are linked with the cardiac abnormalities described in the first section. Moreover, studies from the last 3 years on muscular disorders are presented alongside imaging techniques used to determine cardiac abnormalities.


Assuntos
Cardiopatias Congênitas , Distrofias Musculares , Coração/diagnóstico por imagem , Humanos , Músculos , Distrofias Musculares/diagnóstico
5.
Polymers (Basel) ; 12(12)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256060

RESUMO

Even today, breast cancer remains a global public problem, with a high mortality rate among women. Nanoparticle (NP) based systems are developed to enhance drug delivery, reducing the toxic effect of medicine molecules. By using iron oxide nanoparticles for cancer treatment, several advantages were highlighted: the ability to target specific locations derived from their magnetic properties and reduced side effects. The aim of this study was to examine on breast cancer cell line the anticancer potential of γ-Fe2O3 NPs loaded with doxorubicin (DOX) and stabilized with carboxymethylcellulose sodium (CMCNa). The γ-Fe2O3 NPs were synthesized by laser pyrolysis technique and their nanometric size and crystallinity were confirmed by X-ray diffraction and transmission electron microscopy. The loading efficiency was estimated by using absorption and fluorescence spectroscopy. The DOX conjugated//CMCNa coated γ-Fe2O3 NPs proved through the biological studies to have a good anticancer effect through the inhibition of tumoral cell proliferation, disruption of the cellular membrane, induction of cell death and reduced effects on normal breast cells. Our data showed that DOX cytotoxicity increases significantly when conjugated with É£-Fe2O3 and É£-Fe2O3_CMCNa, a 50% reduction of cancer cell viability was obtained with a concentration around 0.1 µg/mL.

6.
Molecules ; 24(19)2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31574993

RESUMO

The disadvantages that come with traditional cancer treatments, such as chemotherapy and radiotherapy, generated a research shift toward nanotechnology. However, even with the important advancements regarding cancer therapy, there are still serious stepping stones that need to be addressed. The use of both nanotechnology and nanomedicine has generated significant improvements in nano-sized materials development and their use as therapeutic, diagnosis, and imaging agents. The biological barriers that come from the healthy body, as well from the tumorous sites, are important parameters that need to be taken into consideration when designing drug delivery systems. There are several aspects of extreme importance such as the tumor microenvironment and vasculature, the reticuloendothelial system, the blood-brain barrier, the blood-tumor barrier, and the renal system. In order to achieve an effective system for cancer therapy, several characteristics of the nanoparticles have been outlined. Moreover, this review has also focused on the different types of nanoparticles that have been studied over the years as potential candidates for cancer therapy.


Assuntos
Antineoplásicos/administração & dosagem , Materiais Biocompatíveis , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Nanomedicina Teranóstica , Animais , Antineoplásicos/farmacocinética , Materiais Biocompatíveis/química , Humanos , Nanopartículas , Nanotecnologia , Neoplasias/tratamento farmacológico , Nanomedicina Teranóstica/métodos
7.
Rom J Morphol Embryol ; 57(1): 23-32, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27151685

RESUMO

In the last decade, nanobiotechnology has evolved rapidly with an extensive impact on biomedical area. In order to improve bioavailability and minimize adverse effects, drug delivery systems based on magnetic nanocomposites are under development mainly for cancer imaging and antitumor therapy. In this regard, pH sensitive core-shell magnetic nanoparticles (NPs) with accurate controlled size and shape are synthesized by various modern methods, such as homogeneous precipitation, coprecipitation, microemulsion or polyol approaches, high temperature and hydrothermal reactions, sol-gel reactions, aerosol÷vapor processes and sonolysis. Due to their unique combined physico-chemical and biological properties (such as higher dispensability, chemical and thermal stability, biocompatibility), pH responsive core-shell magnetic NPs are widely investigated for controlled release of cytostatic drugs into the tumor site by means of pH change: magnetite@silicon dioxide (Fe3O4@SiO2), Fe3O4@titanium dioxide (TiO2), ß-thiopropionate-polyethylene glycol (PEG)-modified Fe3O4@mSiO2, Fe3O4 NPs core coated with SiO2 with an imidazole group modified PEG-polypeptide (mPEG-poly-L-Asparagine), polyacrylic acid (PAA) and folic acid (FA) coating of the iron oxide NP core, methoxy polyethylene glycol-block-polymethacrylic acid-block-polyglycerol monomethacrylate (MPEG-b-PMAA-b-PGMA) attached by a PGMA block to a Fe3O4 core, PEG-modified polyamidoamine (PAMAM) dendrimer shell with Fe3O4 core and mesoporous silica coated on Fe3O4, mostly coated with an anticancer drug. This review paper highlights the modern research directions currently employed to demonstrate the utility of the pH responsive core-shell magnetic NPs in diagnosis and treatment of oncological diseases.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas de Magnetita/química , Neoplasias/tratamento farmacológico , Animais , Portadores de Fármacos/química , Humanos , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA