Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(43): e2310223120, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37844243

RESUMO

Physical laws-such as the laws of motion, gravity, electromagnetism, and thermodynamics-codify the general behavior of varied macroscopic natural systems across space and time. We propose that an additional, hitherto-unarticulated law is required to characterize familiar macroscopic phenomena of our complex, evolving universe. An important feature of the classical laws of physics is the conceptual equivalence of specific characteristics shared by an extensive, seemingly diverse body of natural phenomena. Identifying potential equivalencies among disparate phenomena-for example, falling apples and orbiting moons or hot objects and compressed springs-has been instrumental in advancing the scientific understanding of our world through the articulation of laws of nature. A pervasive wonder of the natural world is the evolution of varied systems, including stars, minerals, atmospheres, and life. These evolving systems appear to be conceptually equivalent in that they display three notable attributes: 1) They form from numerous components that have the potential to adopt combinatorially vast numbers of different configurations; 2) processes exist that generate numerous different configurations; and 3) configurations are preferentially selected based on function. We identify universal concepts of selection-static persistence, dynamic persistence, and novelty generation-that underpin function and drive systems to evolve through the exchange of information between the environment and the system. Accordingly, we propose a "law of increasing functional information": The functional information of a system will increase (i.e., the system will evolve) if many different configurations of the system undergo selection for one or more functions.

2.
Space Sci Rev ; 219(6): 46, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37636325

RESUMO

The Galileo mission to Jupiter revealed that Europa is an ocean world. The Galileo magnetometer experiment in particular provided strong evidence for a salty subsurface ocean beneath the ice shell, likely in contact with the rocky core. Within the ice shell and ocean, a number of tectonic and geodynamic processes may operate today or have operated at some point in the past, including solid ice convection, diapirism, subsumption, and interstitial lake formation. The science objectives of the Europa Clipper mission include the characterization of Europa's interior; confirmation of the presence of a subsurface ocean; identification of constraints on the depth to this ocean, and on its salinity and thickness; and determination of processes of material exchange between the surface, ice shell, and ocean. Three broad categories of investigation are planned to interrogate different aspects of the subsurface structure and properties of the ice shell and ocean: magnetic induction, subsurface radar sounding, and tidal deformation. These investigations are supplemented by several auxiliary measurements. Alone, each of these investigations will reveal unique information. Together, the synergy between these investigations will expose the secrets of the Europan interior in unprecedented detail, an essential step in evaluating the habitability of this ocean world.

3.
Astrobiology ; 22(9): 1047-1060, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35972349

RESUMO

Landed missions to icy worlds with a subsurface liquid water ocean must meet planetary protection requirements and ensure a sufficiently small likelihood of any microorganism-bearing part of the landed element reaching the ocean. A higher bound on this likelihood is set by the potential for radioisotope thermoelectric generator (RTG) power sources, the hottest possible landed element, to melt through the ice shell and reach the ocean. In this study, we quantify this potential as a function of three key parameters: surface temperature, ice shell thickness (i.e., heat flux through the shell), and thickness of a porous (insulating) snow or regolith cover. Although the model we describe can be applied to any ocean world, we present results in the context of a landed mission concept to the south polar terrain of Saturn's moon Enceladus. In this particular context, we discuss planetary protection considerations for landing site selection. The likelihood of forward microbial contamination of Enceladus' ocean by an RTG-powered landed mission can be made sufficiently low to not undermine compliance with the planetary protection policy.


Assuntos
Meio Ambiente Extraterreno , Gelo , Oceanos e Mares , Planetas , Radioisótopos
4.
Astrobiology ; 22(6): 685-712, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35290745

RESUMO

Cassini revealed that Saturn's Moon Enceladus hosts a subsurface ocean that meets the accepted criteria for habitability with bio-essential elements and compounds, liquid water, and energy sources available in the environment. Whether these conditions are sufficiently abundant and collocated to support life remains unknown and cannot be determined from Cassini data. However, thanks to the plume of oceanic material emanating from Enceladus' south pole, a new mission to Enceladus could search for evidence of life without having to descend through kilometers of ice. In this article, we outline the science motivations for such a successor to Cassini, choosing the primary science goal to be determining whether Enceladus is inhabited and assuming a resource level equivalent to NASA's Flagship-class missions. We selected a set of potential biosignature measurements that are complementary and orthogonal to build a robust case for any life detection result. This result would be further informed by quantifications of the habitability of the environment through geochemical and geophysical investigations into the ocean and ice shell crust. This study demonstrates that Enceladus' plume offers an unparalleled opportunity for in situ exploration of an Ocean World and that the planetary science and astrobiology community is well equipped to take full advantage of it in the coming decades.


Assuntos
Saturno , Exobiologia , Meio Ambiente Extraterreno/química , Gelo , Planetas
6.
Geophys Res Lett ; 48(23): e2021GL095756, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-35027778

RESUMO

Cloud-tracked wind observations document the role of eddies in putting momentum into the zonal jets. Chemical tracers, lightning, clouds, and temperature anomalies document the rising and sinking in the belts and zones, but questions remain about what drives the flow between the belts and zones. We suggest an additional role for the eddies, which is to generate waves that propagate both up and down from the cloud layer. When the waves break they deposit momentum and thereby replace the friction forces at solid boundaries that enable overturning circulations on terrestrial planets. By depositing momentum of one sign within the cloud layer and momentum of the opposite sign above and below the clouds, the eddies maintain all components of the circulation, including the stacked, oppositely rotating cells between each belt-zone pair, and the zonal jets themselves.

7.
Nature ; 584(7819): 55-58, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32760043

RESUMO

Lightning flashes have been observed by a number of missions that visited or flew by Jupiter over the past several decades. Imagery led to a flash rate estimate of about 4 × 10-3 flashes per square kilometre per year (refs. 1,2). The spatial extent of Voyager flashes was estimated to be about 30 kilometres (half-width at half-maximum intensity, HWHM), but the camera was unlikely to have detected the dim outer edges of the flashes, given its weak response to the brightest spectral line of Jovian lightning emission, the 656.3-nanometre Hα line of atomic hydrogen1,3-6. The spatial resolution of some cameras allowed investigators to confirm 22 flashes with HWHM greater than 42 kilometres, and to estimate one with an HWHM of 37 to 45 kilometres (refs. 1,7-9). These flashes, with optical energies comparable to terrestrial 'superbolts'-of (0.02-1.6) × 1010 joules-have been interpreted as tracers of moist convection originating near the 5-bar level of Jupiter's atmosphere (assuming photon scattering from points beneath the clouds)1-3,7,8,10-12. Previous observations of lightning have been limited by camera sensitivity, distance from Jupiter and long exposures (about 680 milliseconds to 85 seconds), meaning that some measurements were probably superimposed flashes reported as one1,2,7,9,10,13. Here we report optical observations of lightning flashes by the Juno spacecraft with energies of approximately 105-108 joules, flash durations as short as 5.4 milliseconds and inter-flash separations of tens of milliseconds, with typical terrestrial energies. The flash rate is about 6.1 × 10-2 flashes per square kilometre per year, more than an order of magnitude greater than hitherto seen. Several flashes are of such small spatial extent that they must originate above the 2-bar level, where there is no liquid water14,15. This implies that multiple mechanisms for generating lightning on Jupiter need to be considered for a full understanding of the planet's atmospheric convection and composition.

8.
Astrobiology ; 20(10): 1168-1184, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32493049

RESUMO

Identifying and distinguishing between abiotic and biotic signatures of organic molecules such as amino acids and fatty acids is key to the search for life on extraterrestrial ocean worlds. Impact ionization mass spectrometers can potentially achieve this by sampling water ice grains formed from ocean water and ejected by moons such as Enceladus and Europa, thereby exploring the habitability of their subsurface oceans in spacecraft flybys. Here, we extend previous high-sensitivity laser-based analog experiments of biomolecules in pure water to investigate the mass spectra of amino acids and fatty acids at simulated abiotic and biotic relative abundances. To account for the complex background matrix expected to emerge from a salty Enceladean ocean that has been in extensive chemical exchange with a carbonaceous rocky core, other organic and inorganic constituents are added to the biosignature mixtures. We find that both amino acids and fatty acids produce sodiated molecular peaks in salty solutions. Under the soft ionization conditions expected for low-velocity (2-6 km/s) encounters of an orbiting spacecraft with ice grains, the unfragmented molecular spectral signatures of amino acids and fatty acids accurately reflect the original relative abundances of the parent molecules within the source solution, enabling characteristic abiotic and biotic relative abundance patterns to be identified. No critical interferences with other abiotic organic compounds were observed. Detection limits of the investigated biosignatures under Enceladus-like conditions are salinity dependent (decreasing sensitivity with increasing salinity), at the µM or nM level. The survivability and ionization efficiency of large organic molecules during impact ionization appear to be significantly improved when they are protected by a frozen water matrix. We infer from our experimental results that encounter velocities of 4-6 km/s are most appropriate for impact ionization mass spectrometers to detect and discriminate between abiotic and biotic signatures.


Assuntos
Aminoácidos/análise , Exobiologia , Ácidos Graxos/análise , Gelo , Meio Ambiente Extraterreno , Gelo/análise , Planetas Menores , Oceanos e Mares
9.
Nat Commun ; 11(1): 2829, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546817

RESUMO

Saturn's moon Titan has a methane cycle with clouds, rain, rivers, lakes, and seas; it is the only world known to presently have a volatile cycle akin to Earth's tropospheric water cycle. Anomalously specular radar reflections (ASRR) from Titan's tropical region were observed with the Arecibo Observatory (AO) and Green Bank Telescope (GBT) and interpreted as evidence for liquid surfaces. The Cassini spacecraft discovered lakes/seas on Titan, however, it did not observe lakes/seas at the AO/GBT anomalously specular locations. A satisfactory explanation for the ASRR has been elusive for more than a decade. Here we show that the ASRR originate from one terrain unit, likely paleolakes/paleoseas. Titan observations provide ground-truth in the search for oceans on exoearths and an important lesson is that identifying liquid surfaces by specular reflections requires a stringent definition of specular; we propose a definition for this purpose.

10.
Space Sci Rev ; 2142018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30613113

RESUMO

The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) instrument onboard the Rosetta spacecraft has measured molecular oxygen (O2) in the coma of comet 67P/Churyumov-Gerasimenko (67P/C-G) in surprisingly high abundances. These measurements mark the first unequivocal detection of O2 in a cometary environment. The large relative abundance of O2 in 67P/C-G despite its high reactivity and low interstellar abundance poses a puzzle for its origin in comet 67P/C-G, and potentially other comets. Since its detection, there have been a number of hypotheses put forward to explain the production and origin of O2 in the comet. These hypotheses cover a wide range of possibilities from various in situ production mechanisms to protosolar nebula and primordial origins. Here, we review the O2 formation mechanisms from the literature, and provide a comprehensive summary of the current state of knowledge of the sources and origin of cometary O2.

11.
Science ; 356(6334): 155-159, 2017 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-28408597

RESUMO

Saturn's moon Enceladus has an ice-covered ocean; a plume of material erupts from cracks in the ice. The plume contains chemical signatures of water-rock interaction between the ocean and a rocky core. We used the Ion Neutral Mass Spectrometer onboard the Cassini spacecraft to detect molecular hydrogen in the plume. By using the instrument's open-source mode, background processes of hydrogen production in the instrument were minimized and quantified, enabling the identification of a statistically significant signal of hydrogen native to Enceladus. We find that the most plausible source of this hydrogen is ongoing hydrothermal reactions of rock containing reduced minerals and organic materials. The relatively high hydrogen abundance in the plume signals thermodynamic disequilibrium that favors the formation of methane from CO2 in Enceladus' ocean.

12.
J Chem Phys ; 146(10): 104308, 2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28298101

RESUMO

The atmosphere of Titan, Saturn's largest moon, exhibits interesting UV- and radiation-driven chemistry between nitrogen and methane, resulting in dipolar, nitrile-containing molecules. The assembly and subsequent solvation of such molecules in the alkane lakes and seas found on the moon's surface are of particular interest for investigating the possibility of prebiotic chemistry in Titan's hydrophobic seas. Here we characterize the solvation of acetonitrile, a product of Titan's atmospheric radiation chemistry tentatively detected on Titan's surface [H. B. Niemann et al., Nature 438, 779-784 (2005)], in an alkane mixture estimated to match a postulated composition of the smaller lakes during cycles of active drying and rewetting. Molecular dynamics simulations are employed to determine the potential of mean force of acetonitrile (CH3CN) clusters moving from the alkane vapor into the bulk liquid. We find that the clusters prefer the alkane liquid to the vapor and do not dissociate in the bulk liquid. This opens up the possibility that acetonitrile-based microscopic polar chemistry may be possible in the otherwise nonpolar Titan lakes.

13.
Geophys Res Lett ; 44(15): 7676-7685, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-33100420

RESUMO

The latitude-altitude map of ammonia mixing ratio shows an ammonia-rich zone at 0-5°N, with mixing ratios of 320-340 ppm, extending from 40-60 bars up to the ammonia cloud base at 0.7 bars. Ammonia-poor air occupies a belt from 5-20°N. We argue that downdrafts as well as updrafts are needed in the 0-5°N zone to balance the upward ammonia flux. Outside the 0-20°N region, the belt-zone signature is weaker. At latitudes out to ±40°, there is an ammonia-rich layer from cloud base down to 2 bars which we argue is caused by falling precipitation. Below, there is an ammonia-poor layer with a minimum at 6 bars. Unanswered questions include how the ammonia-poor layer is maintained, why the belt-zone structure is barely evident in the ammonia distribution outside 0-20°N, and how the internal heat is transported through the ammonia-poor layer to the ammonia cloud base.

14.
Proc Natl Acad Sci U S A ; 113(29): 8121-6, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27382167

RESUMO

The chemistry of hydrogen cyanide (HCN) is believed to be central to the origin of life question. Contradictions between Cassini-Huygens mission measurements of the atmosphere and the surface of Saturn's moon Titan suggest that HCN-based polymers may have formed on the surface from products of atmospheric chemistry. This makes Titan a valuable "natural laboratory" for exploring potential nonterrestrial forms of prebiotic chemistry. We have used theoretical calculations to investigate the chain conformations of polyimine (pI), a polymer identified as one major component of polymerized HCN in laboratory experiments. Thanks to its flexible backbone, the polymer can exist in several different polymorphs, which are relatively close in energy. The electronic and structural variability among them is extraordinary. The band gap changes over a 3-eV range when moving from a planar sheet-like structure to increasingly coiled conformations. The primary photon absorption is predicted to occur in a window of relative transparency in Titan's atmosphere, indicating that pI could be photochemically active and drive chemistry on the surface. The thermodynamics for adding and removing HCN from pI under Titan conditions suggests that such dynamics is plausible, provided that catalysis or photochemistry is available to sufficiently lower reaction barriers. We speculate that the directionality of pI's intermolecular and intramolecular =N-H(…)N hydrogen bonds may drive the formation of partially ordered structures, some of which may synergize with photon absorption and act catalytically. Future detailed studies on proposed mechanisms and the solubility and density of the polymers will aid in the design of future missions to Titan.


Assuntos
Cianeto de Hidrogênio/química , Polímeros/química , Meio Ambiente Extraterreno , Estrutura Molecular , Polimerização , Saturno
15.
Sci Adv ; 2(4): e1501781, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27152351

RESUMO

Cometary nuclei are considered to most closely reflect the composition of the building blocks of our solar system. As such, comets carry important information about the prevalent conditions in the solar nebula before and after planet formation. Recent measurements of the time variation of major and minor volatile species in the coma of the Jupiter family comet 67P/Churyumov-Gerasimenko (67P) by the ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) instrument onboard Rosetta provide insight into the possible origin of this comet. The observed outgassing pattern indicates that the nucleus of 67P contains crystalline ice, clathrates, and other ices. The observed outgassing is not consistent with gas release from an amorphous ice phase with trapped volatile gases. If the building blocks of 67P were formed from crystalline ices and clathrates, then 67P would have agglomerated from ices that were condensed and altered in the protosolar nebula closer to the Sun instead of more pristine ices originating from the interstellar medium or the outskirts of the disc, where amorphous ice may dominate.


Assuntos
Gelo/análise , Planetas , Sistema Solar , Terpenos/isolamento & purificação , Meio Ambiente Extraterreno , Meteoroides , Terpenos/química
16.
Rep Prog Phys ; 76(5): 056901, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23604071

RESUMO

We review the method of exoplanetary microlensing with a focus on two-body planetary lensing systems. The physical properties of planetary systems can be successfully measured by means of a deep analysis of lightcurves and high-resolution imaging of planetary systems, countering the concern that microlensing cannot determine planetary masses and orbital radii. Ground-based observers have had success in diagnosing properties of multi-planet systems from a few events, but space-based observations will be much more powerful and statistically more complete. Since microlensing is most sensitive to exoplanets beyond the snow line, whose statistics, in turn, allow for testing current planetary formation and evolution theories, we investigate the retrieval of semi-major axis density by a microlensing space-based survey with realistic parameters. Making use of a published statistical method for projected exoplanets quantities (Brown 2011), we find that one year of such a survey might distinguish between simple power-law semi-major axis densities. We conclude by briefly reviewing ground-based results hinting at a high abundance of free-floating planets and describing the potential contribution of space-based missions to understanding the frequency and mass distribution of these intriguing objects, which could help unveil the formation processes of planetary systems.

17.
Science ; 337(6093): 457-9, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-22745254

RESUMO

We have detected in Cassini spacecraft data the signature of the periodic tidal stresses within Titan, driven by the eccentricity (e = 0.028) of its 16-day orbit around Saturn. Precise measurements of the acceleration of Cassini during six close flybys between 2006 and 2011 have revealed that Titan responds to the variable tidal field exerted by Saturn with periodic changes of its quadrupole gravity, at about 4% of the static value. Two independent determinations of the corresponding degree-2 Love number yield k(2) = 0.589 ± 0.150 and k(2) = 0.637 ± 0.224 (2σ). Such a large response to the tidal field requires that Titan's interior be deformable over time scales of the orbital period, in a way that is consistent with a global ocean at depth.


Assuntos
Saturno , Água , Meio Ambiente Extraterreno , Gravitação , Gelo , Astronave
18.
Nature ; 479(7374): 478, 2011 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22113684
19.
Faraday Discuss ; 147: 405-18; discussion 527-52, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21302558

RESUMO

The Cassini-Huygens mission discovered an active "hydrologic cycle" on Saturn's giant moon Titan, in which methane takes the place of water. Shrouded by a dense nitrogen-methane atmosphere, Titan's surface is blanketed in the equatorial regions by dunes composed of solid organics, sculpted by wind and fluvial erosion, and dotted at the poles with lakes and seas of liquid methane and ethane. The underlying crust is almost certainly water ice, possibly in the form of gas hydrates (clathrate hydrates) dominated by methane as the included species. The processes that work the surface of Titan resemble in their overall balance no other moon in the solar system; instead, they are most like that of the Earth. The presence of methane in place of water, however, means that in any particular planetary system, a body like Titan will always be outside the orbit of an Earth-type planet. Around M-dwarfs, planets with a Titan-like climate will sit at 1 AU--a far more stable environment than the approximately 0.1 AU where Earth-like planets sit. However, an observable Titan-like exoplanet might have to be much larger than Titan itself to be observable, increasing the ratio of heat contributed to the surface atmosphere system from internal (geologic) processes versus photons from the parent star.

20.
Faraday Discuss ; 147: 509-25; discussion 527-52, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21302563

RESUMO

The examination of ambient thermodynamic conditions suggests that clathrate hydrates could exist in the Martian permafrost, on the surface and in the interior of Titan, as well as in other icy satellites. Clathrate hydrates are probably formed in a significant fraction of planetesimals in the solar system. Thus, these crystalline solids may have been accreted in comets, in the forming giant planets and in their surrounding satellite systems. In this work, we use a statistical thermodynamic model to investigate the composition of clathrate hydrates that may have formed in the primordial nebula. In our approach, we consider the formation sequence of the different ices occurring during the cooling of the nebula, a reasonable idealization of the process by which volatiles are trapped in planetesimals. We then determine the fractional occupancies of guests in each clathrate hydrate formed at a given temperature. The major ingredient of our model is the description of the guest-clathrate hydrate interaction by a spherically averaged Kihara potential with a nominal set of parameters, most of which are fitted to experimental equilibrium data. Our model allows us to find that Kr, Ar and N2 can be efficiently encaged in clathrate hydrates formed at temperatures higher than approximately 48.5 K in the primitive nebula, instead of forming pure condensates below 30 K. However, we find at the same time that the determination of the relative abundances of guest species incorporated in these clathrate hydrates strongly depends on the choice of the parameters of the Kihara potential and also on the adopted size of cages. Indeed, by testing different potential parameters, we have noted that even minor dispersions between the different existing sets can lead to non-negligible variations in the determination of the volatiles trapped in clathrate hydrates formed in the primordial nebula. However, these variations are not found to be strong enough to reverse the relative abundances between the different volatiles in the clathrate hydrates themselves. On the other hand, if contraction or expansion of the cages due to temperature variations are imposed in our model, the Ar and Kr mole fractions can be modified up to several orders of magnitude in clathrate hydrates. Moreover, mole fractions of other molecules such as N2 or CO are also subject to strong changes with the variation of the size of the cages. Our results may affect the predictions of the composition of the planetesimals formed in the outer solar system. In particular, the volatile abundances calculated in the giant planets' atmospheres should be altered because these quantities are proportional to the mass of accreted and vaporized icy planetesimals. For similar reasons, the estimates of the volatile budgets accreted by icy satellites and comets may also be altered by our calculations. For instance, under some conditions, our calculations predict that the abundance of argon in the atmosphere of Titan should be higher than the value measured by Huygens. Moreover, the Ar abundance in comets could be higher than the value predicted by models invoking the incorporation of volatiles in the form of clathrate hydrates in these bodies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA