Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Toxics ; 11(3)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36977016

RESUMO

Benzene, toluene, and xylene (denoted as BTX) are normally used in coatings, sealants, curing agents and other home decoration products, which can cause harm to human health. However, traditional studies mostly focus on the toxicity evaluation of a single pollution source, and little attention has been paid to the toxicity reports of multiple pollutants in a complex system. To evaluate the impact of indoor BTX on human health at the cellular level, the oxidative stress effect of BTX on human bronchial epithelial cells was assessed, including cell cytotoxicity, intracellular ROS, cell mitochondrial membrane potential, cell apoptosis, and CYP2E1 expression. The concentrations of BTX introduced into the human bronchial epithelial cell culture medium were determined based on both the tested distribution in 143 newly decorated rooms and the limited concentrations in the indoor air quality (denoted as IAQ) standards. Our study showed that the concentration in line with the standard limit may still pose a serious risk to health. The cellular biology effect studies of BTX showed that BTX, even at concentrations lower than the national standard limit, can still induce observable oxidative stress effects which warrant attention.

2.
Sci Bull (Beijing) ; 67(12): 1284-1294, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-36546158

RESUMO

Atrial fibrillation is an "invisible killer" of human health. It often induces high-risk diseases, such as myocardial infarction, stroke, and heart failure. Fortunately, atrial fibrillation can be diagnosed and treated early. Low-level vagus nerve stimulation (LL-VNS) is a promising therapeutic method for atrial fibrillation. However, some fundamental challenges still need to be overcome in terms of flexibility, miniaturization, and long-term service of bioelectric stimulation devices. Here, we designed a closed-loop self-powered LL-VNS system that can monitor the patient's pulse wave status in real time and conduct stimulation impulses automatically during the development of atrial fibrillation. The implant is a hybrid nanogenerator (H-NG), which is flexible, light weight, and simple, even without electronic circuits, components, and batteries. The maximum output of the H-NG was 14.8 V and 17.8 µA (peak to peak). In the in vivo effect verification study, the atrial fibrillation duration significantly decreased by 90% after LL-VNS therapy, and myocardial fibrosis and atrial connexin levels were effectively improved. Notably, the anti-inflammatory effect triggered by mediating the NF-κB and AP-1 pathways in our therapeutic system is observed. Overall, this implantable bioelectronic device is expected to be used for self-powerability, intelligentization, portability for management, and therapy of chronic diseases.


Assuntos
Fibrilação Atrial , Insuficiência Cardíaca , Estimulação do Nervo Vago , Humanos , Fibrilação Atrial/terapia , Estimulação do Nervo Vago/métodos , Nervo Vago/fisiologia , Átrios do Coração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA