Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Pollut ; 216: 9-17, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27232452

RESUMO

In practice, stable Cd isotope ratios are being applied to trace pollution sources in the natural environment. However, Cd isotope fractionation during weathering processes is not yet fully understood. We investigated Cd isotope fractionation of PbZn ore in leaching experiments and in the environment under natural weathering processes. Our leaching experiments demonstrated that the leachate was enriched with heavy Cd isotopes, relative to initial and residual samples (Δ(114/110)Cdleachate - initial state = 0.40-0.50‰, Δ(114/110)Cdleachate -residual state = 0.36-0.53‰). For natural samples, δ(114/110)Cd values of stream sediments were higher than those of the corresponding soil samples collected from the riverbank, Δ(114/110)Cdstream sediment -soil can be up to 0.50‰. This observation is consistent with our leaching experiments, which indicate significant Cd isotope fractionation during natural weathering processes. Therefore, natural contributions should be considered when using Cd isotopes to trace anthropogenic pollution in water and sediment systems.


Assuntos
Cádmio/química , Monitoramento Ambiental/métodos , Poluição Ambiental/análise , Chumbo/química , Zinco/química , Cádmio/análise , Fracionamento Químico , Sedimentos Geológicos/química , Isótopos , Chumbo/análise , Mineração , Solo/química , Tempo (Meteorologia) , Zinco/análise
2.
Anal Chem ; 85(13): 6248-53, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23718810

RESUMO

A static double-collector system for accurate, precise, and rapid boron isotope analysis has been established by employing a newly fixed Faraday H3 and H4 cup enabling simultaneously collected Cs2BO2(+) ion beams (m/z = 308 and 309) on a Finnigan-MAT Triton thermal ionization mass spectrometer of boron (Triton B). The experimental result indicated that Cs2BO2(+) ion beams (m/z = 308 and 309) were simultaneously collected using a fixed Faraday H3 and H4 cup without using the "Zoom Quad" function and reduced accelerating voltage. Furthermore, the method enabled the measurement of samples containing as little as 20 ng of boron. An analysis of the National Institute of Standards and Technology standard reference material (NIST SRM) 951 standard showed external reproducibility (2RSD) of ±0.013‰, ± 0.013‰, and ±0.019‰ for 100, 50, and 20 ng of boron, respectively. The present method of static multicollection of Cs2BO2(+) ions is applicable to a wide field of boron isotopic research that requires high precision and accuracy to analyze samples with low boron concentrations, including pore fluids, foraminifera, rivers, rainwater, and other natural samples.

3.
Anal Chem ; 84(23): 10350-8, 2012 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-23088631

RESUMO

Because the variation in chlorine isotopic abundances of naturally occurring chlorine bearing substances is significant, the IUPAC Inorganic Chemistry Division, Commission on Isotopic Abundances and Atomic Weights (CIAAW-IUPAC) decided that the uncertainty of atomic weight of chlorine (A(r)(Cl)) should be increased so that the implied range was related to terrestrial variability in 1999 (Coplen, T. B. Atomic weights of the elements 1999 (IUPAC Technical Report), Pure Appl. Chem.2001, 73(4), 667-683; and then, it emphasized that the standard atomic weights of ten elements including chlorine were not constants of nature but depend upon the physical, chemical, and nuclear history of the materials in 2009 (Wieser, M. E.; Coplen, T. B. Pure Appl. Chem.2011, 83(2), 359-396). According to the agreement by CIAAW that an atomic weight could be defined for one specified sample of terrestrial origin (Wieser, M. E.; Coplen, T. B. Pure Appl. Chem.2011, 83(2), 359-396), the absolute isotope ratios and atomic weight of chlorine in standard reference materials (NIST 975, NIST 975a, ISL 354) were accurately determined using the high-precision positive thermal ionization mass spectrometer (PTIMS)-Cs(2)Cl(+)-graphite method. After eliminating the weighing error caused from evaporation by designing a special weighing container and accurately determining the chlorine contents in two highly enriched Na(37)Cl and Na(35)Cl salts by the current constant coulometric titration, one series of gravimetric synthetic mixtures prepared from two highly enriched Na(37)Cl and Na(35)Cl salts was used to calibrate two thermal ionization mass spectrometers in two individual laboratories. The correction factors (i.e., K(37/35) = R(37/35meas)/R(37/35calc)) were obtained from five cycles of iterative calculations on the basis of calculated and determined R((37)Cl/(35)Cl) values in gravimetric synthetic mixtures. The absolute R((37)Cl/(35)Cl) ratios for NIST SRM 975, NIST 975a, and ISL 354 by the precise calibrated isotopic composition measurements are 0.319876 ± 0.000067, 0.319768 ± 0.000187, and 0.319549 ± 0.000044, respectively. As a result, the atomic weights of chlorine in NIST 975, NIST 975a, and ISL 354 are derived as 35.45284(8), 35.45272(21), and 35.45252(2) individually, which are consistent with the issued values of 35.453(2) by IUPAC in 1999.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA