Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(3): e2306806, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37688339

RESUMO

The issues of polysulfide shuttling and lethargic sulfur redox reaction (SROR) kinetics are the toughest obstacles of lithium-sulfur (Li-S) battery. Herein, integrating the merits of increased density of metal sites and synergistic catalytic effect, a unique single-atom catalyst (SAC) with nonmetallic-bonding Fe-Mn diatomic pairs anchored on hollow nitrogen-doped carbonaceous nanodisk (denoted as FeMnDA@NC) is successfully constructed and well characterized by aberration-corrected high-angle annular dark-field scanning transmission electron microscopy, X-ray absorption spectroscopy, etc. Density functional theory calculation indicates that the Fe-Mn diatomic pairs can effectively inhibit the shuttle effect by enhancing the adsorption ability retarding the polysulfide migration and accelerate the SROR kinetics. As a result, the Li-S battery assembled with FeMnDA@NC modified separator possesses an excellent electrochemical performance with ultrahigh specific capacities of 1419 mAh g-1 at 0.1 C and 885 mAh g-1 at 3.0 C, respectively. An outstanding specific capacity of 1165 mAh g-1 is achieved at 1.0 C and maintains at 731 mAh g-1 after 700 cycles. Notably, the assembled Li-S battery with a high sulfur loading of 5.35 mg cm-2 harvests a practical areal capacity of 5.70 mAh cm-2 at 0.2 C. A new perspective is offered here to construct advanced SACs suitable for the Li-S battery.

2.
Small ; 19(39): e2302249, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37226368

RESUMO

Sluggish sulfur redox reaction (SROR) kinetics accompanying lithium polysulfides (LiPSs) shuttle effect becomes a stumbling block for commercial application of LiS battery. High-efficient single atom catalysts (SACs) are desired to improve the SROR conversion capability; however, the sparse active sites as well as partial sites encapsulated in bulk-phase are fatal to the catalytic performance. Herein, high loading (5.02 wt.%) atomically dispersed manganese sites (MnSA) on hollow nitrogen-doped carbonaceous support (HNC) are realized for the MnSA@HNC SAC by a facile transmetalation synthetic strategy. The thin-walled hollow structure (≈12 nm) anchoring the unique trans-MnN2 O2 sites of MnSA@HNC provides a shuttle buffer zone and catalytic conversion site for LiPSs. Both electrochemical measurement and theoretical calculation indicate that the MnSA@HNC with abundant trans-MnN2 O2 sites have extremely high bidirectional SROR catalytic activity. The assembled LiS battery based on the MnSA@HNC modified separator can deliver a large specific capacity of 1422 mAh g-1 at 0.1 C and stable cycling over 1400 cycles with an ultralow decay rate of 0.033% per cycle at 1 C. More impressively, a flexible pouch cell on account of the MnSA@HNC modified separator may release a high initial specific capacity of 1192 mAh g-1 at 0.1 C and uninterruptedly work after the bending-unbending processes.

3.
J Phys Chem Lett ; 12(7): 1838-1846, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33577333

RESUMO

Using Mn-doped CsPbCl3 nanocrystals (Mn:CsPbCl3 NCs) to improve perovskite's properties is becoming an important strategy. Here, we demonstrate a modified supersaturated recrystallization route to synthesize high-quality Mn:CsPbCl3 NCs at room temperature. Unprecedentedly, sulfonate ligands with various concentrations are shown to successfully tune the dual-color emission of Mn:CsPbCl3 NCs. Ultrafast transient absorption studies reveal that the host-to-dopant internal energy-transfer process involves the mediated traps. Interestingly, the dual-color emission is tuned via stabilizing mediated traps with a small amount of ligand (band edge (BE) emission reduces and Mn2+ emission increases), passivating the deep traps with a large amount of ligand (Mn2+ emission increases), and destroying Mn:CsPbCl3 NCs with too much ligand (both BE and Mn2+ emission is quenched). Furthermore, the ligand tuning Mn2+ emission exhibits quenching for Cu2+ with high sensitivity and selectivity. Our work provides a new strategy to tune the optical properties of Mn:CsPbCl3 NCs and presents its potential application in an optical detector.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA