Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
BMC Musculoskelet Disord ; 25(1): 726, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256670

RESUMO

PURPOSE: The objective of this systematic review and metaanalysis is to compare the efficacy and safety of decompression alone versus decompression plus fusion in single-level lumbar spinal stenosis with spondylolisthesis. METHODS: A comprehensive search of the PubMed, Embase, Cochrane Library, and Ovid Medline databases was conducted to find randomized control trials (RCTs) or cohort studies that compared decompression alone and decompression plus fusion in single-level lumbar spinal stenosis with spondylolisthesis. Operation time; reoperation; postoperative complications; postoperative Oswestry disability index(ODI) scores and scores related to back and leg pain were collected from eligible studies for meta-analysis. RESULTS: We included 3 randomized controlled trials and 9 cohort studies with 6182 patients. The decompression alone group showed less operative time(P < 0.001) and intraoperative blood loss(p = 0.000), and no significant difference in postoperative complications was observed in randomized controlled trials(p = 0.428) or cohort studies(p = 0.731). There was no significant difference between the other two groups in reoperation(P = 0.071), postoperative ODI scores and scores related to back and leg pain. CONCLUSIONS: In this study, we found that the decompression alone group performed better in terms of operation time and intraoperative blood loss, and there was no significant difference between the two surgical methods in rate of reoperation and postoperative complications, ODI, low back pain and leg pain. Therefore, we come to the conclusion that decompression alone is not inferior to decompression and fusion in patients with single-level lumbar spinal stenosis with spondylolisthesis.


Assuntos
Descompressão Cirúrgica , Vértebras Lombares , Fusão Vertebral , Estenose Espinal , Espondilolistese , Humanos , Descompressão Cirúrgica/métodos , Descompressão Cirúrgica/efeitos adversos , Vértebras Lombares/cirurgia , Vértebras Lombares/diagnóstico por imagem , Duração da Cirurgia , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/epidemiologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Reoperação/estatística & dados numéricos , Fusão Vertebral/métodos , Fusão Vertebral/efeitos adversos , Estenose Espinal/diagnóstico , Estenose Espinal/etiologia , Estenose Espinal/cirurgia , Espondilolistese/complicações , Espondilolistese/diagnóstico , Espondilolistese/cirurgia , Resultado do Tratamento
2.
Sci Adv ; 10(37): eadp1796, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39259803

RESUMO

Continuous industrialization has raised daunting environmental concerns, and there is an urgent need to develop a sustainable strategy to tackle the contamination issues. Here, we report a supramolecular photoenzyme ensemble enabling the harvest of solar energy to remove contaminations in water. The well-sourced oxidoreductase, laccase, is confined into a photoactive hydrogen-bonded organic framework (PHOF) through an in situ encapsulation method. The direct electron migration between the oxidation center in a PHOF and the reduction center in laccase facilitates synergistic photoenzyme-coupled catalysis, showing two orders of magnitude higher activity than free laccase for pollutant degradation under visible light, without the need for sacrificial agents or costly co-mediators. Such high decontamination efficiency also surpasses the reported catalysts. The structure and decontamination function of this supramolecular photoenzyme ensemble remain highly stable in complex environment matrices, presenting desirable reusability and almost 100% conversion efficiency of pollutants for real sewage samples. Our conceptual photoenzyme hybrid catalyst offers important insights into green and sustainable water decontamination.

3.
J Cell Biol ; 223(11)2024 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-39196068

RESUMO

The transcription factor TFEB is a major regulator of lysosomal biogenesis and autophagy. There is growing evidence that posttranslational modifications play a crucial role in regulating TFEB activity. Here, we show that lactate molecules can covalently modify TFEB, leading to its lactylation and stabilization. Mechanically, lactylation at K91 prevents TFEB from interacting with E3 ubiquitin ligase WWP2, thereby inhibiting TFEB ubiquitination and proteasome degradation, resulting in increased TFEB activity and autophagy flux. Using a specific antibody against lactylated K91, enhanced TFEB lactylation was observed in clinical human pancreatic cancer samples. Our results suggest that lactylation is a novel mode of TFEB regulation and that lactylation of TFEB may be associated with high levels of autophagy in rapidly proliferating cells, such as cancer cells.


Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Lisossomos , Ubiquitinação , Humanos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Lisossomos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Células HEK293 , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Linhagem Celular Tumoral , Proteólise , Complexo de Endopeptidases do Proteassoma/metabolismo
4.
Viruses ; 16(8)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39205203

RESUMO

The objective of this study was to elucidate the mechanism of action of the active components of Coptidis rhizoma against porcine epidemic diarrhea and to provide a theoretical foundation for further development of novel anti-PED therapeutic agents based on Coptidis rhizoma. The potential targets of Coptidis rhizoma against PEDV were identified through a comprehensive literature review and analysis using the TCMSP pharmacological database, SwissDrugDesign database, GeneCards database, and UniProt database. Subsequently, the STRING database and Cytoscape 3.7.1 software were employed to construct a protein-protein interaction (PPI) network and screen key targets. Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were conducted on the identified targets. Molecular docking studies were performed using AutoDock 1.5.7 software to analyze the binding energy and modes of interaction between the active components of Coptidis rhizoma and the target proteins. The PyMOL 2.5.0a0 software was employed to visualize the docking results. Through comprehensive analysis, 74 specific targets of active components of Coptidis rhizoma against PEDV were identified. The core gene targets were screened, and an interaction network diagram was subsequently generated. Ultimately, 14 core targets were identified, with STAT3, ESR1, CASP3, and SRC exhibiting the most significant interactions. GO enrichment analysis revealed a total of 215 molecular items, including 48 biological function items, 139 biological process items, and 28 cellular component items. KEGG enrichment analysis identified 140 signaling pathways. Molecular docking analysis demonstrated that epiberberine and palmatine exhibited high binding affinity with STAT3 protein, worenine showed high binding affinity with ESR1 protein, obacunone exhibited high binding affinity with CASP3 protein, and epiberberine, obacunone, berberine, and berberruine exhibited high binding affinity with SRC protein. A network pharmacology and molecular docking technology approach was employed to screen six important active components of Coptidis rhizoma and four important potential targets against PEDV infection. The findings indicated that the active components of Coptidis rhizoma could serve as promising pharmaceutical agents for the prevention and control of PEDV, with significant potential for clinical application.


Assuntos
Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Farmacologia em Rede , Vírus da Diarreia Epidêmica Suína , Mapas de Interação de Proteínas , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Suínos , Vírus da Diarreia Epidêmica Suína/efeitos dos fármacos , Mapas de Interação de Proteínas/efeitos dos fármacos , Doenças dos Suínos/tratamento farmacológico , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Coptis chinensis , Antivirais/farmacologia , Antivirais/química , Ontologia Genética
5.
Int J Pharm ; 661: 124457, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38992736

RESUMO

Osteoporosis, a prevalent systemic bone metabolic disorder, primarily affects postmenopausal women and is characterized by increased bone fragility and a heightened risk of fractures. The efficacy of current osteoporosis treatments is often limited by non-specific drug targeting and undesirable off-target skeletal side effects. To address this challenge, we have developed a novel hydroxyapatite-responsive drug delivery system. This system utilizes a self-assembled p-phosphonatocalix[4]arene tetradodecyl ether (PC4A12C), engineered to specifically target and sustain the release of osteoporosis medication at sites of bone remodeling. Our focus centers on icariin (ICA), a drug known for its potent osteogenic properties and minimal adverse effects. In vitro, ICA-loaded PC4A12C (ICA@PC4A12C) demonstrated enhanced proliferation, differentiation, and mineralization in bone marrow mesenchymal stem cells (BMSCs). In vivo, ICA@PC4A12C exhibited superior efficacy in specifically targeting bone tissue, ensuring a controlled and slow release of icariin directly within the bone environment. In an osteoporosis mouse model, treatment with ICA@PC4A12C showed notable enhancement in osteogenic activity and a significant increase in bone density compared to ICA alone. These results demonstrate the potential of PC4A12C as an effective drug carrier in the development of advanced antiosteoporotic drug delivery systems.


Assuntos
Preparações de Ação Retardada , Sistemas de Liberação de Medicamentos , Flavonoides , Células-Tronco Mesenquimais , Osteogênese , Osteoporose , Animais , Osteoporose/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Feminino , Osteogênese/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Flavonoides/administração & dosagem , Flavonoides/química , Flavonoides/farmacologia , Camundongos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Conservadores da Densidade Óssea/administração & dosagem , Densidade Óssea/efeitos dos fármacos , Durapatita/química , Durapatita/administração & dosagem , Camundongos Endogâmicos C57BL , Liberação Controlada de Fármacos
6.
Transl Cancer Res ; 13(5): 2437-2450, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38881929

RESUMO

Background: In recent years, there are few reports on non-SMC condensin I complex subunit G (NCAPG) in osteosarcoma. Our study aims to explore the biological role of NCAPG in osteosarcoma and its underlying molecular mechanism and to further clarify the reasons for the abnormal expression of NCAPG in osteosarcoma. Methods: Here, we mined The Cancer Genome Atlas (TCGA) Program public database through bioinformatics methods, analyzed the differential expression of NCAPG in sarcoma tissue and normal tissue, and explored the relationship between NCAPG expression level and sarcoma tissue differentiation, including tumor recurrence, metastasis, and patient survival. Next, the transcription factors responsible for the abnormal expression of NCAPG in osteosarcoma tumors were predicted by multiple online website tools and verified via cellular experiments. Subsequently, loss of function and cell phenotype experiments were performed to confirm the effect of NCAPG on the malignant biological behavior of osteosarcoma cells. Mechanistically, by reviewing the literature, we found that NCAPG can affect the malignant progression of many solid tumors by regulating the Wnt/ß-catenin signaling pathway. Therefore, we preliminarily investigated the potential effect of NCAPG on this pathway via western blot experiments in osteosarcoma. Results: Increased expression of NCAPG was found in sarcoma compared to normal tissues, which was positively correlated with poor differentiation, metastasis, and poor prognosis. Combining the transcription factor prediction results, correlation analysis, and expression level in the TCGA public database with validation outcomes of in vitro cell assays, we found that E2F transcription factor 1 (E2F1) regulated the increased expression of NCAPG in osteosarcoma. The results of cell phenotype experiments showed that silencing NCAPG could inhibit the proliferation, migration, and invasion of osteosarcoma cells. The preliminary mechanistic investigation suggested that NCAPG may affect osteosarcoma progression through the Wnt/ß-catenin pathway. Conclusions: Our data reveal that E2F1 facilitates NCAPG expression in osteosarcoma by regulating the transcription of the NCAPG gene. Up-regulation of NCAPG promotes osteosarcoma progression via the Wnt/ß-catenin signaling axis.

7.
BMC Plant Biol ; 24(1): 462, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802731

RESUMO

In this comprehensive genome-wide study, we identified and classified 83 Xylanase Inhibitor Protein (XIP) genes in wheat, grouped into five distinct categories, to enhance understanding of wheat's resistance to Fusarium head blight (FHB), a significant fungal threat to global wheat production. Our analysis reveals the unique distribution of XIP genes across wheat chromosomes, particularly at terminal regions, suggesting their role in the evolutionary expansion of the gene family. Several XIP genes lack signal peptides, indicating potential alternative secretion pathways that could be pivotal in plant defense against FHB. The study also uncovers the sequence homology between XIPs and chitinases, hinting at a functional diversification within the XIP gene family. Additionally, the research explores the association of XIP genes with plant immune mechanisms, particularly their linkage with plant hormone signaling pathways like abscisic acid and jasmonic acid. XIP-7A3, in particular, demonstrates a significant increase in expression upon FHB infection, highlighting its potential as a key candidate gene for enhancing wheat's resistance to this disease. This research not only enriches our understanding of the XIP gene family in wheat but also provides a foundation for future investigations into their role in developing FHB-resistant wheat cultivars. The findings offer significant implications for wheat genomics and breeding, contributing to the development of more resilient crops against fungal diseases.


Assuntos
Resistência à Doença , Fusarium , Doenças das Plantas , Proteínas de Plantas , Triticum , Triticum/genética , Triticum/microbiologia , Triticum/imunologia , Fusarium/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Imunidade Vegetal/genética , Estudo de Associação Genômica Ampla , Genes de Plantas , Genoma de Planta , Filogenia
8.
Vet Res ; 55(1): 61, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750508

RESUMO

Porcine reproductive and respiratory syndrome (PRRS), a highly contagious disease caused by Porcine reproductive and respiratory syndrome virus (PRRSV), results in huge economic losses to the world pig industry. MiRNAs have been reported to be involved in regulation of viral infection. In our study, miR-320 was one of 21 common differentially expressed miRNAs of Meishan, Pietrain, and Landrace pig breeds at 9-h post-infection (hpi). Bioinformatics and experiments found that PRRSV replication was inhibited by miR-320 through directly targeting PRRSV ORF6. In addition, the expression of CCAAT enhancer binding protein beta (CEBPB) was also inhibited by miR-320 by targeting the 3' UTR of CEBPB, which significantly promotes PRRSV replication. Intramuscular injection of pEGFP-N1-miR-320 verified that miR-320 significantly inhibited the replication of PRRSV and alleviated the symptoms caused by PRRSV in piglets. Taken together, miR-320 have significant roles in the infection and may be promising therapeutic target for PRRS.


Assuntos
MicroRNAs , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Proteínas Virais , Replicação Viral , Animais , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Suínos , Proteínas Virais/genética , Proteínas Virais/metabolismo
9.
Physiol Behav ; 281: 114549, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604593

RESUMO

Maternal exposure to elevated levels of steroid hormones during pregnancy is associated with the development of chronic conditions in offspring that manifest in adulthood. However, the effects of progesterone (P4) administration during early pregnancy on fetal development and subsequent offspring behavior remain poorly understood. In this study, we aimed to investigate the effects of P4 treatment during early pregnancy on the transcript abundance in the fetal brain and assess the behavioral consequences in the offspring during adolescence and adulthood. Using RNA-seq analysis, we examined the impact of P4 treatment on the fetal brain transcriptome in a dosage-dependent manner. Our results revealed differential regulation of genes involved in neurotransmitter transport, synaptic transmission, and transcriptional regulation. Specifically, we observed bidirectional regulation of transcription factors (TFs) by P4 at different doses, highlighting the critical role of these TFs in neurodevelopment. To assess behavioral outcomes, we conducted open field and elevated plus maze tests. Offspring treated with low-dose P4 (LP4) displayed increased exploratory behavior during both adolescence and adulthood. In contrast, the high-dose P4 (HP4) group exhibited impaired exploration and heightened anxiety-like behaviors compared to the control mice. Moreover, in a novel object recognition test, HP4-treated offspring demonstrated impaired object recognition memory during both developmental stages. Additionally, both LP4 and HP4 groups showed reduced social interaction in the three-chamber test. These results suggest that prenatal exposure to P4 exerts a notable influence on the expression of genes associated with neurodevelopment and may induce alterations in behavioral characteristics in progeny, highlighting the need to monitor progesterone levels during pregnancy for long-term impacts on fetal brain development and behavior.


Assuntos
Comportamento Animal , Encéfalo , Comportamento Exploratório , Efeitos Tardios da Exposição Pré-Natal , Progesterona , Transcriptoma , Animais , Gravidez , Progesterona/farmacologia , Feminino , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/crescimento & desenvolvimento , Camundongos , Transcriptoma/efeitos dos fármacos , Masculino , Comportamento Animal/efeitos dos fármacos , Comportamento Exploratório/efeitos dos fármacos , Ansiedade , Camundongos Endogâmicos C57BL , Reconhecimento Psicológico/efeitos dos fármacos , Progestinas/farmacologia
10.
Environ Sci Technol ; 58(16): 6934-6944, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651174

RESUMO

Stratospheric aerosol injection (SAI) is proposed as a means of reducing global warming and climate change impacts. Similar to aerosol enhancements produced by volcanic eruptions, introducing particles into the stratosphere would reflect sunlight and reduce the level of warming. However, uncertainties remain about the roles of nucleation mechanisms, ionized molecules, impurities (unevaporated residuals of injected precursors), and ambient conditions in the generation of SAI particles optimally sized to reflect sunlight. Here, we use a kinetic ion-mediated and homogeneous nucleation model to study the formation of H2SO4 particles in aircraft exhaust plumes with direct injection of H2SO4 vapor. We find that under the conditions that produce particles of desired sizes (diameter ∼200-300 nm), nucleation occurs in the nascent (t < 0.01 s), hot (T = 360-445 K), and dry (RH = 0.01-0.1%) plume and is predominantly unary. Nucleation on chemiions occurs first, followed by neutral new particle formation, which converts most of the injected H2SO4 vapor to particles. Coagulation in the aging and diluting plumes governs the subsequent evolution to a narrow (σg = 1.3) particle size distribution. Scavenging by exhaust soot is negligible, but scavenging by acid impurities or incomplete H2SO4 evaporation in the hot exhaust plume and enhanced background aerosols can matter. This research highlights the need to obtain laboratory and/or real-world experiment data to verify the model prediction.


Assuntos
Aerossóis , Aeronaves , Tamanho da Partícula , Emissões de Veículos , Atmosfera/química , Poluentes Atmosféricos/química
11.
J Pharm Anal ; 14(3): 416-426, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38618244

RESUMO

The comprehensive detection and identification of active ingredients in complex matrices is a crucial challenge. Liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) is the most prominent analytical platform for the exploration of novel active compounds from complex matrices. However, the LC-HRMS-based analysis workflow suffers from several bottleneck issues, such as trace content of target compounds, limited acquisition for fragment information, and uncertainty in interpreting relevant MS2 spectra. Lycibarbarspermidines are vital antioxidant active ingredients in Lycii Fructus, while the reported structures are merely focused on dicaffeoylspermidines due to their low content. To comprehensively detect the new structures of lycibarbarspermidine derivatives, a "depict" strategy was developed in this study. First, potential new lycibarbarspermidine derivatives were designed according to the biosynthetic pathway, and a comprehensive database was established, which enlarged the coverage of lycibarbarspermidine derivatives. Second, the polarity-oriented sample preparation of potential new compounds increased the concentration of the target compounds. Third, the construction of the molecular network based on the fragmentation pathway of lycibarbarspermidine derivatives broadened the comprehensiveness of identification. Finally, the weak response signals were captured by data-dependent scanning (DDA) followed by parallel reaction monitoring (PRM), and the efficiency of acquiring MS2 fragment ions of target compounds was significantly improved. Based on the integrated strategy above, 210 lycibarbarspermidine derivatives were detected and identified from Lycii Fructus, and in particular, 170 potential new compounds were structurally characterized. The integrated strategy improved the sensitivity of detection and the coverage of low-response components, and it is expected to be a promising pipeline for discovering new compounds.

12.
J Hazard Mater ; 471: 134317, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38636229

RESUMO

Although previous studies have shown increased health risks of particulate matters, few have evaluated the long-term health impacts of ultrafine particles (UFPs or PM0.1, ≤ 0.1 µm in diameter). This study assessed the association between long-term exposure to UFPs and mortality in New York State (NYS), including total non-accidental and cause-specific mortalities, sociodemographic disparities and seasonal trends. Collecting data from a comprehensive chemical transport model and NYS Vital Records, we used the interquartile range (IQR) and high-level UFPs (≥75 % percentile) as indicators to link with mortalities. Our modified difference-in-difference model controlled for other pollutants, meteorological factors, spatial and temporal confounders. The findings indicate that long-term UFPs exposure significantly increases the risk of non-accidental mortality (RR=1.10, 95 % CI: 1.05, 1.17), cardiovascular mortality (RR=1.11, 95 % CI: 1.05, 1.18) particularly for cerebrovascular (RR=1.21, 95 % CI: 1.10, 1.35) and pulmonary heart diseases (RR=1.33, 95 % CI: 1.13, 1.57), and respiratory mortality (borderline significance, RR=1.09, 95 % CI: 1.00, 1.18). Hispanics (RR=1.13, 95 % CI: 1.00, 1.29) and non-Hispanic Blacks (RR=1.40, 95 % CI: 1.16, 1.68) experienced significantly higher mortality risk after exposure to UFPs, compared to non-Hispanic Whites. Children under five, older adults, non-NYC residents, and winter seasons are more susceptible to UFPs' effects.


Assuntos
Poluentes Atmosféricos , Material Particulado , New York/epidemiologia , Humanos , Material Particulado/toxicidade , Pessoa de Meia-Idade , Idoso , Adulto , Poluentes Atmosféricos/toxicidade , Feminino , Masculino , Criança , Adolescente , Pré-Escolar , Adulto Jovem , Doenças Cardiovasculares/mortalidade , Exposição Ambiental/efeitos adversos , Mortalidade/tendências , Lactente , Fatores Socioeconômicos , Estações do Ano , Fatores Sociodemográficos , Tamanho da Partícula , Recém-Nascido
13.
Ann Am Thorac Soc ; 21(8): 1147-1155, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38445971

RESUMO

Rationale: Exposure to particulate matter is associated with various adverse health outcomes. Ultrafine particles (UFPs; diameter <0.1 µm) are a unique public health challenge because of their size. However, limited studies have examined their impacts on human health, especially across seasons and demographic characteristics. Objectives: To evaluate the effect of UFP exposure on the risk of visiting the emergency department (ED) for a chronic lower respiratory disease (CLRD) in New York State in 2013-2018. Methods: We used a case-crossover design and conditional logistic regression to estimate how UFP exposure led to CLRD-related ED visits. GEOS-Chem Advanced Particle Microphysics, a state-of-the-art chemical transport model with a size-resolved particle microphysics model, generated air pollution simulation data. We then matched UFP exposure estimates to geocoded health records for asthma, bronchiectasis, chronic bronchitis, emphysema, unspecified bronchitis, and other chronic airway obstructions in New York State from 2013 through 2018. In addition, we assessed interactions with age, ethnicity, race, sex, meteorological factors, and season. Results: Each 1-(interquartile range [IQR]) increase in UFP exposure led to a 0.37% increased risk of a respiratory-related ED visit on lag 0-0, or the day of the ED visits, (95% confidence interval [CI], 0.23-0.52%) and a 1.81% increase on lag 0-6, or 6 days before the ED visit, (95% CI, 1.58-2.03%). The highest risk was in the emphysema subtype (lag 0-5, 4.18%; 95% CI, 0.16-8.37%), followed by asthma (lag 0-6, 2.00%), chronic bronchitis (lag 0-6, 1.78%), other chronic airway obstructions (lag 0-6, 1.60%), and unspecified bronchitis (lag 0-6, 1.49%). We also found significant interactions between UFP health impacts and season (Fall, 3.29%), temperature (<90th percentile, 2.27%), relative humidity (>90th percentile, 4.63%), age (children aged <18 yr, 3.19%), and sex (men, 2.06%) on lag 0-6. Conclusions: In this study, UFP exposure increased CLRD-related ED visits across all seasons and demographic characteristics, yet these associations varied according to various factors, which requires more research.


Assuntos
Serviço Hospitalar de Emergência , Material Particulado , Humanos , New York/epidemiologia , Material Particulado/efeitos adversos , Material Particulado/análise , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Serviço Hospitalar de Emergência/estatística & dados numéricos , Adulto , Adolescente , Criança , Exposição Ambiental/efeitos adversos , Adulto Jovem , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Pré-Escolar , Doença Crônica , Estudos Cross-Over , Hospitalização/estatística & dados numéricos , Poluição do Ar/efeitos adversos , Lactente , Modelos Logísticos , Estações do Ano , Asma/epidemiologia
14.
PNAS Nexus ; 3(3): pgae085, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38476666

RESUMO

Legionnaires' disease (LD) is a severe form of pneumonia (∼10-25% fatality rate) caused by inhalation of aerosols containing Legionella, a pathogenic gram-negative bacteria. These bacteria can grow, spread, and aerosolize through building water systems. A recent dramatic increase in LD incidence has been observed globally, with a 9-fold increase in the United States from 2000 to 2018, and with disproportionately higher burden for socioeconomically vulnerable subgroups. Despite the focus of decades of research since the infamous 1976 outbreak, substantial knowledge gaps remain with regard to source of exposure and the reason(s) for the dramatic increase in LD incidence. Here, we rule out factors indicated in literature to contribute to its long-term increases and identify a hitherto unexplored explanatory factor. We also provide an epidemiological demonstration that the occurrence of LD is linked with exposure to cooling towers (CTs). Our results suggest that declining sulfur dioxide air pollution, which has many well-established health benefits, results in reduced acidity of aerosols emitted from CTs, which may prolong the survival duration of Legionella in contaminated CT droplets and contribute to the increase in LD incidence. Mechanistically associating decreasing aerosol acidity with this respiratory disease has implications for better understanding its transmission, predicting future risks, and informed design of preventive and interventional strategies that consider the complex impacts of continued sulfur dioxide changes.

15.
Anim Sci J ; 95(1): e13925, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38462234

RESUMO

In this study, we characterized the effects of CT dietary inclusion at 2% (wt/wt) dry matter on the goat rumen metabolome and fermentation characteristics. Barley (BA) and corn (CN) were separately used as basal grain for the control rations, and rations supplemented with CT were BACT and CNCT, respectively. The rations were tested using eight Japanese Shiba × Saanen goats in a replicated 4 × 4 Latin square arrangement (28 days for each period). Ruminal fluid was obtained on day 25 of each period, and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) analysis was performed. Metabolites from BACT against BA and CNCT against CN were mostly associated with purine metabolism. Moreover, BACT against BA showed intensified biosynthesis of unsaturated fatty acids, and CNCT against CN resulted in strengthened amino acid metabolism. Furthermore, strong correlations were observed between rumen NH3 -N and the copy number of total bacteria with most of the differential metabolites. The present paper provides a better understanding of the relationship between the rumen metabolome and fermentation characteristics and supports a shift in concern about using CT as a strategy to manipulate rumen metabolism.


Assuntos
Leite , Proantocianidinas , Animais , Leite/metabolismo , Fermentação , Rúmen/metabolismo , Cabras/metabolismo , Cromatografia Líquida/veterinária , Espectrometria de Massas em Tandem/veterinária , Dieta/veterinária , Metaboloma , Zea mays , Ração Animal/análise
16.
ACS Omega ; 9(8): 9247-9255, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38434851

RESUMO

Uncontrolled hemorrhaging resulting from trauma, surgery, and disease-associated or drug-induced blood disorders can cause significant morbidities and mortalities in civilian and military populations. Self-assembling peptide nanofibers are particularly attractive due to their rapid and efficient hemostasis, biocompatibility, and wound-healing properties. In this study, we designed two types of 12-residue peptides by using a strong fishnet-like peptide sequence and a pro-cell adhesion sequence (Arg-Gly-Asp, RGD). The peptides are HN2-X-Ser-Phe-Cys-Phe-Lys-Phe-Glu-X-Arg-Gly-Asp-OH (where X is Pro or Tyr), which dissolve in deionized (DI) water and form stable and transparent functional hydrogels. Transmission electron microscopy and scanning electron microscopy demonstrated that the two peptides self-assemble into nanowebs and nanofibers, forming a fishnet-like and three-dimensional network structure. Circular dichroism and Fourier transform infrared spectroscopy analysis demonstrated that the self-assembled peptides mainly adopt a ß-sheet structure with ß-turn and α-helix as auxiliary assembly growth. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and SEM analysis showed that the cell survival rates were very good, delivering an obvious promotion of cell proliferation of fibroblasts and hepatocytes. Importantly, in vivo hemostasis delivered that the self-assembled peptide nanowebs and nanofibers had a good hemostatic effect on rat saphenous vein and liver bleeding, achieving 38 s faster hemostasis, which was better than commercial "Instantaneous" hemostatic powder. Accoupling the fast hemostasis and effective promotion of liver defect rapid repair, the peptide self-assembly strategy offers a clinically promising treatment option for life-threatening liver bleeding and serves as a renewed impetus for the development of peptide hydrogels as effective hemostatic agents.

17.
Angew Chem Int Ed Engl ; 63(17): e202316907, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38436539

RESUMO

The efficient ethanol electrosynthesis from CO2 is challenging with low selectivity at high CO2 electrolysis rates, due to the competition with H2 and other reduction products. Copper-based bimetallic electrocatalysts are potential candidates for the CO2-to-ethanol conversion, but the secondary metal has mainly been focused on active components (such as Ag, Sn) for CO2 electroreduction, which also promote selectivity of ethylene or other reduction products rather than ethanol. Limited attention has been given to alkali-earth metals due to their inherently active chemical property. Herein, we rationally synthesized a (111) facet-oriented nano Cu2Mg (designated as Cu2Mg(111)) intermetallic compound with high-density ordered Cu3-Mg sites. The in situ Raman spectroscopy and density function theory calculations revealed that the Cu3 - δ $_{^{\rm{{\rm \delta} }} }$ --Mg- δ $_{^{\rm{{\rm \delta} }} }$ + active sites allowed to increase *CO surface coverage, decrease reaction energy for *CO-CO coupling, and stabilize *CHCHOH intermediates, thus promoting the ethanol formation pathway. The Cu2Mg(111) catalyst exhibited a high FEC2H5OH of 76.2±4.8 % at 600 mA⋅cm-2, and a peak value of |jC2H5OH| of 720±34 mA⋅cm-2, almost 4 times of that using conventional Cu2Mg with (311) facets, comparable to the best reported values for the CO2-to-ethanol electroreduction.

18.
ACS Appl Mater Interfaces ; 16(7): 8875-8884, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38343187

RESUMO

Lithium bis(trifluoromethane) sulfonamide (LiTFSI) and oxygen-doped organic semiconductors have been frequently used to achieve record power conversion efficiencies of perovskite solar cells (PSCs). However, this conventional doping process is time-consuming and leads to poor device stability due to the incorporation of Li ions. Herein, aiming to accelerate the doping process and remove the Li ions, we report an alternative p-doping process by mixing a new small-molecule organic semiconductor, N2,N2,N7,N7-tetrakis (4-methoxyphenyl)-9-(4-(octyloxy) phenyl)-9H carbazole-2,7-diamine (labeled OH44) and its preoxidized form OH44+(TFSI-). With this method, a champion efficiency of 21.8% has been achieved for small-area PSCs, which is superior to the state-of-the-art EH44 and comparable with LiTFSI and oxygen-doped spiro-OMeTAD. Moreover, the stability of OH44-based PSCs is improved compared with those of EH44, maintaining more than 85% of its initial efficiency after aging in an ambient condition without encapsulation for 1000 h. In addition, we achieved efficiencies of 14.7 and 12.6% for the solar modules measured with a metal mask of 12.0 and 48.0 cm2, respectively, which demonstrated the scalability of this method.

19.
Invest Ophthalmol Vis Sci ; 65(2): 31, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38381411

RESUMO

Purpose: N4-acetylcytidine (ac4C) is a post-transcriptional RNA modification catalyzed by N-acetyltransferase 10 (NAT10), a critical factor known to influence mRNA stability. However, the role of ac4C in visual development remains unexplored. Methods: Analysis of public datasets and immunohistochemical staining were conducted to assess the expression pattern of nat10 in zebrafish. We used CRISPR/Cas9 and RNAi technologies to knockout (KO) and knockdown (KD) nat10, the zebrafish ortholog of human NAT10, and evaluated its effects on early development. To assess the impact of nat10 knockdown on visual function, we performed comprehensive histological evaluations and behavioral analyses. Transcriptome profiling and real-time (RT)-PCR were utilized to detect alterations in gene expression resulting from the nat10 knockdown. Dot-blot and RNA immunoprecipitation (RIP)-PCR analyses were conducted to verify changes in ac4C levels in both total RNA and opsin mRNA specifically. Additionally, we used the actinomycin D assay to examine the stability of opsin mRNA following the nat10 KD. Results: Our study found that the zebrafish NAT10 protein shares similar structural properties with its human counterpart. We observed that the nat10 gene was prominently expressed in the visual system during early zebrafish development. A deficiency of nat10 in zebrafish embryos resulted in increased mortality and developmental abnormalities. Behavioral and histological assessments indicated significant vision impairment in nat10 KD zebrafish. Transcriptomic analysis and RT-PCR identified substantial downregulation of retinal transcripts related to phototransduction, light response, photoreceptors, and visual perception in the nat10 KD group. Dot-blot and RIP-PCR analyses confirmed a pronounced reduction in ac4C levels in both total RNA and specifically in opsin messenger RNA (mRNA). Additionally, by evaluating mRNA decay in zebrafish treated with actinomycin D, we observed a significant decrease in the stability of opsin mRNA in the nat10 KD group. Conclusions: The ac4C-mediated mRNA modification plays an essential role in maintaining visual development and retinal function. The loss of NAT10-mediated ac4C modification results in significant disruptions to these processes, underlining the importance of this RNA modification in ocular development.


Assuntos
Acetiltransferases , Peixe-Zebra , Humanos , Animais , Peixe-Zebra/genética , Dactinomicina , Opsinas , Opsinas de Bastonetes , RNA/genética , RNA Mensageiro/genética
20.
Int Immunopharmacol ; 129: 111571, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38309095

RESUMO

BACKGROUND: Chronic bronchitis (CB), a type of chronic obstructive pulmonary disease (COPD), poses a significant global health burden owing to its high morbidity and mortality rates. Eucalyptol, limonene and pinene enteric capsules (ELPs) are clinically used as expectorants to treat various respiratory diseases, including CB, but their acting mechanisms remain unclear. In this study, we investigated the anti-CB effects of ELP in a rat model of lipopolysaccharide (LPS)-induced CB. The molecular mechanisms underlying its inhibitory effects on airway inflammation were further explored in LPS-stimulated Beas-2B cells. METHODS: ELP was characterized using gas chromatography. The production of inflammatory mediators in bronchoalveolar lavage fluid (BALF) was determined using an enzyme-linked immunosorbent assay. The expression of MUC5AC, MUC5B, and p-p65 in the lung tissue was measured using immunohistochemical staining. The gene expression of inflammatory mediators was determined using qRT-PCR. The expression levels of the target proteins were detected by western blotting. Nuclear localization of p65 was determined using an immunofluorescence assay. RESULTS: Compared to the CB model rats, ELP-treated rats showed reduced airway resistance, inflammation, and goblet cell hyperplasia. In BALF, ELP decreased the levels of inflammatory mediators, including TNF-α, IL-6, MIP-1α, and CCL5. ELP also suppressed LPS-induced elevation of MUC5AC, MUC5B, and p-p65 in the lung tissue. The metabolic pathway changes caused by LPS challenge were improved by ELP treatment. In LPS-exposed Beas-2B cells, ELP treatment inhibited the expression of TNFA, IL6, CCL5, MCP1, and MIP2A and decreased the phospho-levels of toll-like receptor 4 (TLR4) signaling-related proteins, including p-p38, p-JNK, p-ERK, p-TBK1, p-IKKα/ß, p-IκB, p-p65, and p-c-Jun. ELP also hindered the nuclear translocation of p65, c-Jun, and IRF3. CONCLUSIONS: This study showed that ELP has a potential therapeutic effect in LPS-induced CB rat model, possibly by suppressing TLR4 signaling. These results justify the clinical use of ELP for the treatment of pulmonary inflammatory diseases.


Assuntos
Bronquite Crônica , Animais , Ratos , Lipopolissacarídeos , Eucaliptol/uso terapêutico , Limoneno/uso terapêutico , Receptor 4 Toll-Like , Inflamação/tratamento farmacológico , Mediadores da Inflamação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA