Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474183

RESUMO

Colletotrichum gloeosporioides is widely distributed and causes anthracnose on many crops, resulting in serious economic losses. Common fungal extracellular membrane (CFEM) domain proteins have been implicated in virulence and their interaction with the host plant, but their roles in C. gloeosporioides are still unknown. In this study, a CFEM-containing protein of C. gloeosporioides was identified and named as CgCFEM1. The expression levels of CgCFEM1 were found to be markedly higher in appressoria, and this elevated expression was particularly pronounced during the initial stages of infection in the rubber tree. Absence of CgCFEM1 resulted in impaired pathogenicity, accompanied by notable perturbations in spore morphogenesis, conidiation, appressorium development and primary invasion. During the process of appressorium development, the absence of CgCFEM1 enhanced the mitotic activity in both conidia and germ tubes, as well as compromised conidia autophagy. Rapamycin was found to basically restore the appressorium formation, and the activity of target of rapamycin (TOR) kinase was significantly induced in the CgCFEM1 knockout mutant (∆CgCFEM1). Furthermore, CgCFEM1 was proved to suppress chitin-triggered reactive oxygen species (ROS) accumulation and change the expression patterns of defense-related genes. Collectively, we identified a fungal effector CgCFEM1 that contributed to pathogenicity by regulating TOR-mediated conidia and appressorium morphogenesis of C. gloeosporioides and inhibiting the defense responses of the rubber tree.


Assuntos
Colletotrichum , Proteínas Fúngicas , Virulência/genética , Proteínas Fúngicas/metabolismo , Sirolimo , Doenças das Plantas/microbiologia
2.
Int J Mol Sci ; 25(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38474190

RESUMO

Anthracnose, induced by Colletotrichum gloeosporioides, poses a substantial economic threat to rubber tree yields and various other tropical crops. Ede1, an endocytic scaffolding protein, plays a crucial role in endocytic site initiation and maturation in yeast. Metacaspases, sharing structural similarities with caspase family proteases, are essential for maintaining cell fitness. To enhance our understanding of the growth and virulence of C. gloeosporioides, we identified a homologue of Ede1 (CgEde1) in C. gloeosporioides. The knockout of CgEde1 led to impairments in vegetative growth, conidiation, and pathogenicity. Furthermore, we characterized a weakly interacted partner of CgEde1 and CgMca (orthologue of metacaspase). Notably, both the single mutant ΔCgMca and the double mutant ΔCgEde1/ΔCgMca exhibited severe defects in conidiation and germination. Polarity establishment and pathogenicity were also disrupted in these mutants. Moreover, a significantly insoluble protein accumulation was observed in ΔCgMca and ΔCgEde1/ΔCgMca strains. These findings elucidate the mechanism by which CgEde1 and CgMca regulates the growth and pathogenicity of C. gloeosporioides. Their regulation involves influencing conidiation, polarity establishment, and maintaining cell fitness, providing valuable insights into the intricate interplay between CgEde1 and CgMca in C. gloeosporioides.


Assuntos
Colletotrichum , Proteínas Fúngicas , Virulência , Proteínas Fúngicas/metabolismo , Doenças das Plantas
3.
Adv Healthc Mater ; 13(18): e2304261, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38482944

RESUMO

Defects in autophagy contribute to neurological deficits and motor dysfunction after spinal cord injury. Here a nanosystem is developed to deliver autophagy-promoting, anti-inflammatory drugs to nerve cells in the injured spinal cord. Celastrol, metformin, and everolimus as the mTOR inhibitor are combined into the zein-based nanoparticles, aiming to solubilize the drugs and prolong their circulation. The nanoparticles are internalized by BV2 microglia and SH-SY5Y neuron-like cells in culture; they inhibit the secretion of inflammatory factors by BV2 cells after insult with lipopolysaccharide, and they protect SH-SY5Y cells from the toxicity of H2O2. In a rat model of spinal cord injury, the nanoparticles mitigate inflammation and promote spinal cord repair. In the in vitro and in vivo experiments, the complete nanoparticles function better than the free drugs or nanoparticles containing only one or two drugs. These results suggest that the triple-drug nanoparticles show promise for treating spinal cord injury.


Assuntos
Anti-Inflamatórios , Nanopartículas , Regeneração Nervosa , Traumatismos da Medula Espinal , Zeína , Animais , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Nanopartículas/química , Regeneração Nervosa/efeitos dos fármacos , Zeína/química , Ratos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Humanos , Ratos Sprague-Dawley , Metformina/farmacologia , Metformina/química , Triterpenos Pentacíclicos/farmacologia , Triterpenos Pentacíclicos/química , Camundongos , Linhagem Celular , Microglia/efeitos dos fármacos , Microglia/metabolismo , Autofagia/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA