Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Mater Chem B ; 12(6): 1592-1603, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38265091

RESUMO

Osteoporosis is a disease that manifests itself as an abnormality of bone metabolism and is characterized by low bone mass and destruction of the bone microstructure. Since bone resorption occurs more rapidly than new bone formation, osteoporosis leads to reduced orthopedic implant stability. From a microenvironmental point of view, the rationale for this outcome is that osteoclasts are overactive in the bone tissue of patients with osteoporosis, and the large amount of H+ they produce leads to local chronic acidosis, which promotes bone mineral loss. Therefore, we designed a weakly alkaline layered double hydroxide (LDH) coating to modulate the pathologically acidic microenvironment and the osteogenic-osteoclastic coupling by releasing Sr2+. We prepared Sr-Fe LDH coatings on pure titanium implants using a hydrothermal method in this study and characterized the material using SEM, AFM, XRD, XPS, EDS, ICP, pH acidimeter, etc. We found that the coatings had good nanomorphology and were able to efficiently neutralize H+ as well as steadily release Sr2+ for up to 21 days. In vitro, the coating not only significantly promoted the adhesion, proliferation, and differentiation of osteoblasts, but also inhibited the differentiation of osteoclasts at the same time. In addition, in animal experiments, the coating significantly improved the mechanical stability of the implant in osteoporotic rats, increasing Sr-Fe LDH@Ti maximal push-out force by 72.2% compared to Ti. At the same time, the coating was effective in reversing the osteoporotic state, resulting in a 58.5% increase in BV/TV (%), and a 12.4% increase in Tb. N (1 mm-1), a 31.6% increase in Tb. Th (µm), and a 30.9% increase in BA (%). Our results suggest that this Sr-Fe LDH nanocoating material with acid-neutralizing, as well as long-term Sr2+-releasing capabilities, is a novel and effective orthopedic implant coating material under osteoporotic conditions.


Assuntos
Osseointegração , Osteoporose , Ratos , Humanos , Animais , Próteses e Implantes , Osso e Ossos , Osteoclastos
2.
ACS Appl Mater Interfaces ; 15(12): 15140-15151, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36929922

RESUMO

Multidrug-resistant bacteria caused by the unlimited overuse of antibiotics pose a great challenge to global health. An antibacterial method based on reactive oxygen species (ROS) is one of the effective strategies without inducing bacterial resistance. Owing to the ability of generating ROS, piezocatalytic material-mediated sonodynamic therapy (SDT) has drawn much attention. However, its major challenge is the low ROS generation efficiency in the piezocatalytic process due to the poor charge carrier concentration of piezoelectric materials. Vacancy engineering can regulate the charge density and largely promote ROS generation under ultrasound (US) irradiation. Herein, a US-responsive self-doped barium titanate with controlled oxygen vacancy (Vo) concentrations was successfully synthesized through a facile thermal reduction treatment at different temperatures (i.e., 350, 400, and 450 °C), and the corresponding samples were named as BTO-350, BTO-400, and BTO-450, respectively. Then, the effect of Vo concentrations on ROS generation efficiency during the piezocatalytic process was systematically studied. And BTO-400 was found to possess the highest piezocatalytic activity and excellent sonodynamic antibacterial performance against Escherichia coli and Staphylococcus aureus. Furthermore, its antibacterial mechanism was confirmed that the ROS generated under US could damage bacterial cell membrane and cause considerable leakage of cytoplasmic components and irreversible death of bacteria. Notably, the in vivo results illustrated that the BTO-400 could serve as an effective antibacterial agent and accelerate skin healing via SDT therapy. In all, the Vo defect-modified nano-BaTiO3 has a noticeable potential to induce a rapid and efficient sterilization as well as skin tissue repair by SDT.


Assuntos
Infecções Estafilocócicas , Terapia por Ultrassom , Humanos , Espécies Reativas de Oxigênio/metabolismo , Terapia por Ultrassom/métodos , Esterilização , Antibacterianos/farmacologia , Linhagem Celular Tumoral
3.
Curr Med Chem ; 30(8): 935-952, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35220933

RESUMO

Black phosphorus nanostructures (nano-BPs) mainly include BP nanosheets (BP NSs), BP quantum dots (BPQDs), and other nano-BPs-based particles at nanoscale. Firstly discovered in 2014, nano-BPs are one of the most popular nanomaterials. Different synthesis methods are discussed in short to understand the basic concepts and developments in synthesis. Exfoliated nano-BPs, i.e. nano-BPs possess high surface area, high photothermal conversion efficacy, excellent biocompatibility, high charge carrier mobility (~1000 cm-2V-1s-1), thermal conductivity of 86 Wm-1K-1; and these properties make it a highly potential candidate for fabrication of biosensing platform. These properties enable nano-BPs to be promising photothermal/drug delivery agents as well as in electrochemical data storage devices and sensing devices; and in super capacitors, photodetectors, photovoltaics and solar cells, LEDs, super-conductors, etc. Early diagnosis is very critical in the health sector scenarios. This review attempts to highlight the attempts made towards attaining stable BP, BP-aptamer conjugates for successful biosensing applications. BP-aptamer- based platforms are reviewed to highlight the significance of BP in detecting biological and physiological markers of cardiovascular diseases and cancer; to be useful in disease diagnosis and management.


Assuntos
Nanoestruturas , Neoplasias , Pontos Quânticos , Humanos , Fósforo/química , Nanoestruturas/química , Pontos Quânticos/química , Oligonucleotídeos , Biomarcadores
4.
J Mater Chem B ; 11(2): 430-440, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36524427

RESUMO

Optogenetics using light-sensitive proteins such as calcium transport channel rhodopsin (CatCh) opens up new possibilities for non-invasive remote manipulation of neural function. However, current optogenetic approaches for neurological disorder therapies rely on visible light excitation and are rarely applied to neurogenesis and nerve regeneration. Herein, we propose a new strategy for tissue engineering which combines optogenetic technology and biomimetic nerve scaffolds. Upconversion nanoparticles (UCNPs) were synthesized and integrated with oriented fibrillar PCL membranes with a collagen coating to establish neuro-matrix interfaces. Benefiting from the excellent bioactivity, oriented fibrillation and NIR-photoresponsivity, the CatCh-transfected PC12 cells on these interfaces exhibited enhanced cell elongation and neurite extension, as well as upregulated neurogenesis upon NIR excitation. Furthermore, a UCNP-integrated scaffold as an optogenetic actuator allowed NIR to penetrate dermal tissues to mediate neural activation, with an efficiency comparable to that of a 470 nm blue light. Compared with current visible light-excited optogenetics, our composite scaffold-mediated NIR stimulation addresses the problem of tissue penetration and will enable less-invasive neurofunctional manipulation, with the potential for remote therapy.


Assuntos
Nanopartículas , Optogenética , Raios Infravermelhos , Neurônios , Células PC12 , Ratos , Animais
5.
Carbohydr Polym ; 278: 118961, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973776

RESUMO

Either oriented architecture or viscoelasticity is pivotal to neurogenesis, thus, native neural extracellular matrix derived-hyaluronan hydrogels with nano-orientation and viscoelasticity recapitulated might be instructive for neurogenesis, however it is still unexploited. Herein, based on aldehyde-methacrylate difunctionalized hyaluronan, by integrating imine kinetic modulation and microfluidic biofabrication, we construct a hydrogel system with orthogonal viscoelasticity and nano-topography. We then find the positive synergy effects of matrix nano-orientation and viscoelasticity not only on neurites outgrowth and elongation of neural cells, but also on neuronal differentiation of stem cells. Moreover, by implanting viscoelastic and nano-aligned hydrogels into lesion sites, we demonstrate the enhanced repair of spinal cord injury, including ameliorated pathological microenvironment, facilitated endogenous neurogenesis and functional axons regeneration as well as motor function restoration. This work supplies universal platform for preparing neuronal inducing hyaluronan-based hydrogels which might serve as promising therapeutic strategies for nerve injury.


Assuntos
Aldeídos/farmacologia , Ácido Hialurônico/farmacologia , Hidrogéis/farmacologia , Metacrilatos/farmacologia , Neurogênese/efeitos dos fármacos , Alicerces Teciduais/química , Aldeídos/química , Ácido Hialurônico/química , Hidrogéis/química , Metacrilatos/química , Engenharia Tecidual , Viscosidade
6.
Int J Mol Sci ; 22(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34769219

RESUMO

Decades of intense scientific research investigations clearly suggest that only a subset of a large number of metals, ceramics, polymers, composites, and nanomaterials are suitable as biomaterials for a growing number of biomedical devices and biomedical uses. However, biomaterials are prone to microbial infection due to Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), Staphylococcus epidermidis (S. epidermidis), hepatitis, tuberculosis, human immunodeficiency virus (HIV), and many more. Hence, a range of surface engineering strategies are devised in order to achieve desired biocompatibility and antimicrobial performance in situ. Surface engineering strategies are a group of techniques that alter or modify the surface properties of the material in order to obtain a product with desired functionalities. There are two categories of surface engineering methods: conventional surface engineering methods (such as coating, bioactive coating, plasma spray coating, hydrothermal, lithography, shot peening, and electrophoretic deposition) and emerging surface engineering methods (laser treatment, robot laser treatment, electrospinning, electrospray, additive manufacturing, and radio frequency magnetron sputtering technique). Atomic-scale engineering, such as chemical vapor deposition, atomic layer etching, plasma immersion ion deposition, and atomic layer deposition, is a subsection of emerging technology that has demonstrated improved control and flexibility at finer length scales than compared to the conventional methods. With the advancements in technologies and the demand for even better control of biomaterial surfaces, research efforts in recent years are aimed at the atomic scale and molecular scale while incorporating functional agents in order to elicit optimal in situ performance. The functional agents include synthetic materials (monolithic ZnO, quaternary ammonium salts, silver nano-clusters, titanium dioxide, and graphene) and natural materials (chitosan, totarol, botanical extracts, and nisin). This review highlights the various strategies of surface engineering of biomaterial including their functional mechanism, applications, and shortcomings. Additionally, this review article emphasizes atomic scale engineering of biomaterials for fabricating antimicrobial biomaterials and explores their challenges.


Assuntos
Materiais Revestidos Biocompatíveis , Óxidos N-Cíclicos , Células-Tronco Mesenquimais/metabolismo , Resveratrol , Marcadores de Spin , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Óxidos N-Cíclicos/química , Óxidos N-Cíclicos/farmacologia , Humanos , Resveratrol/química , Resveratrol/farmacologia , Propriedades de Superfície
7.
ACS Appl Mater Interfaces ; 13(44): 52346-52361, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34699166

RESUMO

Following spinal cord injury (SCI), the transmission of electrical signals is interrupted, and an oxidative microenvironment is generated, hindering nerve regeneration and functional recovery. The strategies of regulating oxidative pathological microenvironment while restoring endogenous electrical signal transmission hold promise for SCI treatment. However, challenges are still faced in simply fabricating bioactive scaffolds with both antioxidation and conductivity. Herein, aiming to construct an antioxidative and conductive microenvironment for nerve regeneration, the difunctional polypyrrole (PPy) nanoparticles were developed and incorporated into bioactive collagen/hyaluronan hydrogel. Owing to the embedded PPy in hydrogel, the encapsulated bone marrow mesenchymal stem cells (BMSCs) can be protected from oxidative damage, and their neuronal differentiation was promoted by the synergy between conductivity and electrical stimulation, which is proved to be related to PI3K/Akt and the mitogen-activated protein kinase (MAPK) pathway. In SCI rats, the BMSC-laden difunctional hydrogel restored the transmission of bioelectric signals and inhibited secondary damage, thereby facilitating neurogenesis, resulting in prominent nerve regeneration and functional recovery. Overall, taking advantage of a difunctional nanomaterial to meet two essential requirements in SCI repair, this work provides intriguing insights into the design of biomaterials for nerve regeneration and tissue engineering.

8.
Antibiotics (Basel) ; 10(9)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34572676

RESUMO

In a report by WHO (2014), it was stated that antimicrobial resistance is an arising challenge that needs to be resolved. This resistance is a critical issue in terms of disease or infection treatment and is usually caused due to mutation, gene transfer, long-term usage or inadequate use of antimicrobials, survival of microbes after consumption of antimicrobials, and the presence of antimicrobials in agricultural feeds. One of the solutions to this problem is antimicrobial peptides (AMPs), which are ubiquitously present in the environment. These peptides are of concern due to their special mode of action against a wide spectrum of infections and health-related problems. The biomedical field has the highest need of AMPs as it possesses prominent desirable activity against HIV-1, skin cancer, breast cancer, in Behcet's disease treatment, as well as in reducing the release of inflammatory cells such as TNFα, IL-8, and IL-1ß, enhancing the production of anti-inflammatory cytokines such as IL-10 and GM-CSF, and in wound healing properties. This review has highlighted all the major functions and applications of AMPs in the biomedical field and concludes the future potential of AMPs.

9.
Polymers (Basel) ; 13(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34451220

RESUMO

Regenerative medicine seeks to assess how materials fundamentally affect cellular functions to improve retaining, restoring, and revitalizing damaged tissues and cancer therapy. As potential candidates in regenerative medicine, hydrogels have attracted much attention due to mimicking of native cell-extracellular matrix (ECM) in cell biology, tissue engineering, and drug screening over the past two decades. In addition, hydrogels with a high capacity for drug loading and sustained release profile are applicable in drug delivery systems. Recently, self-healing supramolecular hydrogels, as a novel class of biomaterials, are being used in preclinical trials with benefits such as biocompatibility, native tissue mimicry, and injectability via a reversible crosslink. Meanwhile, the localized therapeutics agent delivery is beneficial due to the ability to deliver more doses of therapeutic agents to the targeted site and the ability to overcome post-surgical complications, inflammation, and infections. These highly potential materials can help address the limitations of current drug delivery systems and the high clinical demand for customized drug release systems. To this aim, the current review presents the state-of-the-art progress of multifunctional and self-healable hydrogels for a broad range of applications in cancer therapy, tissue engineering, and regenerative medicine.

10.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203608

RESUMO

Poly(2-hydroxyethyl methacrylate) (pHEMA) as a biomaterial with excellent biocompatibility and cytocompatibility elicits a minimal immunological response from host tissue making it desirable for different biomedical applications. This article seeks to provide an in-depth overview of the properties and biomedical applications of pHEMA for bone tissue regeneration, wound healing, cancer therapy (stimuli and non-stimuli responsive systems), and ophthalmic applications (contact lenses and ocular drug delivery). As this polymer has been widely applied in ophthalmic applications, a specific consideration has been devoted to this field. Pure pHEMA does not possess antimicrobial properties and the site where the biomedical device is employed may be susceptible to microbial infections. Therefore, antimicrobial strategies such as the use of silver nanoparticles, antibiotics, and antimicrobial agents can be utilized to protect against infections. Therefore, the antimicrobial strategies besides the drug delivery applications of pHEMA were covered. With continuous research and advancement in science and technology, the outlook of pHEMA is promising as it will most certainly be utilized in more biomedical applications in the near future. The aim of this review was to bring together state-of-the-art research on pHEMA and their applications.


Assuntos
Tecnologia Biomédica , Poli-Hidroxietil Metacrilato/química , Anti-Infecciosos/farmacologia , Regeneração Óssea , Sistemas de Liberação de Medicamentos , Humanos , Cicatrização
11.
Int J Mol Sci ; 22(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201385

RESUMO

Hydrogels are known as water-swollen networks formed from naturally derived or synthetic polymers. They have a high potential for medical applications and play a crucial role in tissue repair and remodeling. MSC-derived exosomes are considered to be new entities for cell-free treatment in different human diseases. Recent progress in cell-free bone tissue engineering via combining exosomes obtained from human mesenchymal stem cells (MSCs) with hydrogel scaffolds has resulted in improvement of the methodologies in bone tissue engineering. Our research has been actively focused on application of biotechnological methods for improving osteogenesis and bone healing. The following text presents a concise review of the methodologies of fabrication and preparation of hydrogels that includes the exosome loading properties of hydrogels for bone regenerative applications.


Assuntos
Diferenciação Celular , Exossomos/química , Hidrogéis/química , Células-Tronco Mesenquimais/citologia , Osteogênese , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Humanos
12.
Int J Mol Sci ; 22(11)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063962

RESUMO

Drug-eluting stents have been widely implanted to prevent neointimal hyperplasia associated with bare metal stents. Conventional polymers and anti-proliferative drugs suffer from stent thrombosis due to the non-selective nature of the drugs and hypersensitivity to polymer degradation products. Alternatively, various herbal anti-proliferative agents are sought, of which biochanin A (an isoflavone phytoestrogen) was known to have anti-proliferative and vasculoprotective action. PLA-PEG diblock copolymer was tagged with heparin, whose degradation releases heparin locally and prevents thrombosis. To get a controlled drug release, biochanin A was loaded in layered double hydroxide nanoparticles (LDH), which are further encapsulated in a heparin-tagged PLA-PEG copolymer. LDH nanoparticles are synthesized by a co-precipitation process; in situ as well as ex situ loading of biochanin A were done. PLA-PEG-heparin copolymer was synthesized by esterification reaction, and the drug-loaded nanoparticles are coated. The formulation was characterized by FTIR, XRD, DSC, DLS, and TEM. In vitro drug release studies, protein adhesion, wettability, hemocompatibility, and degradation studies were performed. The drug release was modeled by mathematical models to further emphasize the mechanism of drug release. The developed drug-eluting stent coating is non-thrombogenic, and it offers close to zero-order release for 40 days, with complete polymer degradation in 14 weeks.


Assuntos
Genisteína/química , Heparina/química , Hidróxidos/química , Lactatos/química , Nanopartículas/química , Polietilenoglicóis/química , Polímeros/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos/fisiologia , Stents Farmacológicos , Humanos , Modelos Teóricos , Trombose/tratamento farmacológico
13.
Int J Mol Sci ; 22(4)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33579019

RESUMO

Progenitor cells derived from the retinal pigment epithelium (RPECs) have shown promise as therapeutic approaches to degenerative retinal disorders including diabetic retinopathy, age-related macular degeneration and Stargardt disease. However, the degeneration of Bruch's membrane (BM), the natural substrate for the RPE, has been identified as one of the major limitations for utilizing RPECs. This degeneration leads to decreased support, survival and integration of the transplanted RPECs. It has been proposed that the generation of organized structures of nanofibers, in an attempt to mimic the natural retinal extracellular matrix (ECM) and its unique characteristics, could be utilized to overcome these limitations. Furthermore, nanoparticles could be incorporated to provide a platform for improved drug delivery and sustained release of molecules over several months to years. In addition, the incorporation of tissue-specific genes and stem cells into the nanostructures increased the stability and enhanced transfection efficiency of gene/drug to the posterior segment of the eye. This review discusses available drug delivery systems and combination therapies together with challenges associated with each approach. As the last step, we discuss the application of nanofibrous scaffolds for the implantation of RPE progenitor cells with the aim to enhance cell adhesion and support a functionally polarized RPE monolayer.


Assuntos
Portadores de Fármacos/química , Nanofibras/química , Doenças Retinianas/terapia , Epitélio Pigmentado da Retina/transplante , Transplante de Células-Tronco/métodos , Alicerces Teciduais/química , Animais , Lâmina Basilar da Corioide/química , Retinopatia Diabética/terapia , Sistemas de Liberação de Medicamentos/métodos , Humanos , Degeneração Macular/terapia , Epitélio Pigmentado da Retina/citologia , Doença de Stargardt/terapia , Células-Tronco/citologia
14.
Tissue Eng Part A ; 27(11-12): 679-702, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33499750

RESUMO

Bioprinting of body tissues has gained great attention in recent years due to its unique advantages, including the creation of complex geometries and printing the patient-specific tissues with various drug and cell types. The most momentous part of the bioprinting process is bioink, defined as a mixture of living cells and biomaterials (especially hydrogels). Among different biomaterials, natural polymers are the best choices for hydrogel-based bioinks due to their intrinsic biocompatibility and minimal inflammatory response in body condition. Gelatin methacryloyl (GelMA) hydrogel is one of the high-potential hydrogel-based bioinks due to its easy synthesis with low cost, great biocompatibility, transparent structure that is useful for cell monitoring, photocrosslinkability, and cell viability. Furthermore, the potential of adjusting properties of GelMA due to the synthesis protocol makes it a suitable choice for soft or hard tissues. In this review, different methods for the bioprinting of GelMA-based bioinks, as well as various effective process parameters, are reviewed. Also, several solutions for challenges in the printing of GelMA-based bioinks are discussed, and applications of GelMA-based bioprinted tissues argued as well. Impact statement Bioprinting has been demonstrated as a promising and alternative approach for organ transplantation to develop various types of living tissue. Bioinks, with great biological characteristics similar to the host tissues and rheological/flow features, are the first requirements for the successful bioprinting approach. Gelatin methacryloyl (GelMA) hydrogel is one of the high-potential hydrogel-based bioinks. This review provides a comprehensive look at different methods for the bioprinting of GelMA-based bioinks and applications of GelMA-based bioprinted tissues for tissue repair.


Assuntos
Bioimpressão , Gelatina , Humanos , Hidrogéis/farmacologia , Metacrilatos , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais
15.
Mater Sci Eng C Mater Biol Appl ; 119: 111613, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33321656

RESUMO

Construction of biomimetic microenvironment is vital to understand the relationship between matrix mechanical cues and cell fate, as well as to explore potential tissue engineering scaffolds for clinical application. In this study, through the enzymatic mineralizable collagen hydrogel system, we established the biomimetic bone matrix which was capable of realizing mechanical regulation independent of mineralization by incorporation of phosphorylated molecules (vinylphosphonic acid, VAP). Then, based on the biomimetic mineralized matrix with same composition but significantly different mechanical stiffness, we further investigated the effect of matrix stiffness on osteogenic differentiation of bone marrow stromal cells (BMSCs). The results clearly demonstrated that biomimetic mineralized microenvironment with higher mechanical strength promoted osteogenic differentiation of BMSCs. Further mechanism analysis demonstrated that the mineralized hydrogel with higher stiffness promoted cytoskeletal assembly, which enhanced the expression and nuclear colocalization of YAP and RUNX2, thereby promoted the osteogenic differentiation of stem cells. This study supplies a promising material platform not only for bone tissue engineering but also for exploring the mechanism of biomimetic bone matrix mechanics on osteogenesis.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Biomimética , Diferenciação Celular , Células Cultivadas , Citoesqueleto , Alicerces Teciduais
16.
Smart Mater Med ; 1: 48-53, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33349812

RESUMO

The outbreak of a novel highly infectious virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has aroused people's concern about public health. The lack of ready-to-use vaccines and therapeutics makes the fight with these pathogens extremely difficult. To this point, rationally designed virus entry inhibitors that block the viral interaction with its receptor can be novel strategies to prevent virus infection. For ideal inhibition of the virus, the virus-inhibitor interaction has to outperform the virus-host interaction. In our view, the morphology of the inhibitor should be carefully designed to benefit virus-inhibitor binding, especially that the surfaces of viruses are mostly rough due to the existence of surface proteins for receptor-binding. In this perspective article, we would like to discuss the recent progress of designing inhibitors with spiky topography to maximize the interactions between viruses and inhibitors. We also would like to share our idea for the future study of inhibitors to prevent virus infection.

17.
Materials (Basel) ; 13(20)2020 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-33080937

RESUMO

Iron oxides are chemical compounds which have different polymorphic forms, including γ-Fe2O3 (maghemite), Fe3O4 (magnetite), and FeO (wustite). Among them, the most studied are γ-Fe2O3 and Fe3O4, as they possess extraordinary properties at the nanoscale (such as super paramagnetism, high specific surface area, biocompatible etc.), because at this size scale, the quantum effects affect matter behavior and optical, electrical and magnetic properties. Therefore, in the nanoscale, these materials become ideal for surface functionalization and modification in various applications such as separation techniques, magnetic sorting (cells and other biomolecules etc.), drug delivery, cancer hyperthermia, sensing etc., and also for increased surface area-to-volume ratio, which allows for excellent dispersibility in the solution form. The current methods used are partially and passively mixed reactants, and, thus, every reaction has a different proportion of all factors which causes further difficulties in reproducibility. Direct active and complete mixing and automated approaches could be solutions to this size- and shape-controlled synthesis, playing a key role in its exploitation for scientific or technological purposes. An ideal synthesis method should be able to allow reliable adjustment of parameters and control over the following: fluctuation in temperature; pH, stirring rate; particle distribution; size control; concentration; and control over nanoparticle shape and composition i.e., crystallinity, purity, and rapid screening. Iron oxide nanoparticle (IONP)-based available clinical applications are RNA/DNA extraction and detection of infectious bacteria and viruses. Such technologies are important at POC (point of care) diagnosis. IONPs can play a key role in these perspectives. Although there are various methods for synthesis of IONPs, one of the most crucial goals is to control size and properties with high reproducibility to accomplish successful applications. Using multiple characterization techniques to identify and confirm the oxide phase of iron can provide better characterization capability. It is very important to understand the in-depth IONP formation mechanism, enabling better control over parameters and overall reaction and, by extension, properties of IONPs. This work provides an in-depth overview of different properties, synthesis methods, and mechanisms of iron oxide nanoparticles (IONPs) formation, and the diverse range of their applications. Different characterization factors and strategies to confirm phase purity in the IONP synthesis field are reviewed. First, properties of IONPs and various synthesis routes with their merits and demerits are described. We also describe different synthesis strategies and formation mechanisms for IONPs such as for: wustite (FeO), hematite (α-Fe2O3), maghemite (ɤ-Fe2O3) and magnetite (Fe3O4). We also describe characterization of these nanoparticles and various applications in detail. In conclusion, we present a detailed overview on the properties, size-controlled synthesis, formation mechanisms and applications of IONPs.

18.
Adv Mater ; 32(49): e2003065, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33124725

RESUMO

Nanomaterial-based enzyme-mimetic catalysts (Enz-Cats) have received considerable attention because of their optimized and enhanced catalytic performances and selectivities in diverse physiological environments compared with natural enzymes. Recently, owing to their molecular/atomic-level catalytic centers, high porosity, large surface area, high loading capacity, and homogeneous structure, metal-organic frameworks (MOFs) have emerged as one of the most promising materials in engineering Enz-Cats. Here, the recent advances in the design of MOF-engineered Enz-Cats, including their preparation methods, composite constructions, structural characterizations, and biomedical applications, are highlighted and commented upon. In particular, the performance, selectivities, essential mechanisms, and potential structure-property relations of these MOF-engineered Enz-Cats in accelerating catalytic reactions are discussed. Some potential biomedical applications of these MOF-engineered Enz-Cats are also breifly proposed. These applications include, for example, tumor therapies, bacterial disinfection, tissue regeneration, and biosensors. Finally, the future opportunities and challenges in emerging research frontiers are thoroughly discussed. Thereby, potential pathways and perspectives for designing future state-of-the-art Enz-Cats in biomedical sciences are offered.


Assuntos
Materiais Biomiméticos/química , Engenharia , Estruturas Metalorgânicas/química , Catálise
19.
J Mater Chem B ; 8(40): 9212-9226, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32929441

RESUMO

Dynamic biochemical and biophysical signals of cellular matrix define and regulate tissue-specific cell functions and fate. To recapitulate this complex environment in vitro, biomaterials based on structural- or degradation-tunable polymers have emerged as powerful platforms for regulating the "on-demand" cell-material dynamic interplay. As one of the most prevalent photoswitch molecules, the photoisomerization of azobenzene demonstrates a unique advantage in the construction of dynamic substrates. Moreover, the development of azobenzene-containing biomaterials is particularly helpful in elucidating cells that adapt to a dynamic microenvironment or integrate spatiotemporal variations of signals. Herein, this minireview, places emphasis on the research progress of azobenzene photoswitches in the dynamic regulation of matrix signals. Some techniques and material design methods have been discussed to provide some theoretical guidance for the rational and efficient design of azopolymer-based material platforms. In addition, considering that the UV-light response of traditional azobenzene photoswitches is not conducive to biological applications, we have summarized the recent approaches to red-shifting the light wavelength for azobenzene activation.


Assuntos
Compostos Azo/química , Microambiente Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Matriz Extracelular/metabolismo , Animais , Compostos Azo/efeitos da radiação , Linhagem Celular Tumoral , Materiais Revestidos Biocompatíveis/efeitos da radiação , Condutividade Elétrica , Humanos , Isomerismo , Luz , Polímeros/química , Polímeros/efeitos da radiação , Propriedades de Superfície
20.
Biomacromolecules ; 21(9): 3745-3755, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32786729

RESUMO

As a key mechanical signal of natural extracellular matrix (ECM), stress relaxation plays an essential role in cell fate decision. However, the biomimetic matrix with fast stress relaxation and its cellular response mechanism have received little attention. Meanwhile, the nanofibrillar architecture which is conductive to mechanical transduction has invariably been ignored in the previous viscoelastic matrix design. Herein, by introducing a dynamic covalent imine bond into a physically cross-linked collagen hydrogel, we prepared bionic fast-relaxing nanofibrillar hydrogels with relaxation time less than 10 s. Through a single control of imine bond content, we realized fine-tuning of the relaxation rate while maintaining a constant initial modulus and fiber density. Using MC3T3-E1 cells as a model, we then proved that the nanofibrillar matrix with fast relaxation mechanics can effectively promote cell spreading and differentiation. In particular, TRPV4 as a molecular sensor of matrix viscoelasticity was demonstrated to regulate cell fate on the nanofibrillar hydrogels by mediating calcium influx. It is expected that the material design principle combining both nanofibrillar structure and tunable fast-relaxation can provide a more broadly adaptable materials platform for simulating natural ECM mechanical cues, and the investigation of the TRPV4 ion channel mediated cellular response will facilitate discovery of more fundamental mechanisms in tissue growth and development.


Assuntos
Hidrogéis , Canais de Cátion TRPV , Diferenciação Celular , Matriz Extracelular , Iminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA