Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Hum Genomics ; 18(1): 103, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285482

RESUMO

BACKGROUND: Deletion or duplication in the DMD gene is one of the most common causes of Duchenne and Becker muscular dystrophy (DMD/BMD). However, the pathogenicity of complex rearrangements involving DMD, especially segmental duplications with unknown breakpoints, is not well understood. This study aimed to evaluate the structure, pattern, and potential impact of rearrangements involving DMD duplication. METHODS: Two families with DMD segmental duplications exhibiting phenotypical differences were recruited. Optical genome mapping (OGM) was used to explore the cryptic pattern of the rearrangements. Breakpoints were validated using long-range polymerase chain reaction combined with next-generation sequencing and Sanger sequencing. RESULTS: A multi-copy duplication involving exons 64-79 of DMD was identified in Family A without obvious clinical symptoms. Family B exhibited typical DMD neuromuscular manifestations and presented a duplication involving exons 10-13 of DMD. The rearrangement in Family A involved complex in-cis tandem repeats shown by OGM but retained a complete copy (reading frame) of DMD inferred from breakpoint validation. A reversed insertion with a segmental repeat was identified in Family B by OGM, which was predicted to disrupt the normal structure and reading frame of DMD after confirming the breakpoints. CONCLUSIONS: Validating breakpoint and rearrangement pattern is crucial for the functional annotation and pathogenic classification of genomic structural variations. OGM provides valuable insights into etiological analysis of DMD/BMD and enhances our understanding for cryptic effects of complex rearrangements.


Assuntos
Distrofina , Éxons , Distrofia Muscular de Duchenne , Linhagem , Fenótipo , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Distrofina/genética , Masculino , Éxons/genética , Feminino , Mapeamento Cromossômico , Rearranjo Gênico/genética , Criança , Duplicações Segmentares Genômicas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Duplicação Gênica/genética , Adolescente
2.
J Thromb Haemost ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39260745

RESUMO

BACKGROUND: Targeted long-read sequencing (LRS) is expected to comprehensively analyse diverse complex variants in haemophilia A (HA) and B (HB), caused by the F8 and F9 genes, respectively. However, its clinical applicability still requires extensive validation. OBJECTIVES: To evaluate the clinical applicability of targeted LRS-based analysis, compared with routine PCR-based methods. METHODS: Gene variants of retrieved subjects were retrospectively and prospectively analysed. Whole-genome sequencing (WGS) was performed to further analyse undiagnosed cases. Breakpoints of novel genomic rearrangements were mapped and validated using long-distance-PCR and long-range-PCR combined with sequencing. RESULTS: Totally, 122 subjects were retrieved. In retrospective analysis of the 90 HA cases, HA-LRS assay showed consistent results in 84 cases compared with routine methods, and characterized six large deletions with their exact breakpoints confirmed by further validation in six cases (routine methods only presented failure in amplifying the involved exons). In prospective analysis of the 21 HA subjects, 20 variants of F8 were identified in 20 cases. For the remaining HA patient, no duplication/deletion or SNV/InDel was found, but a potential recombination involving exons 14 and 21 of F8 was observed by LRS. WGS analysis and further verification defined a 30,478bp tandem repeat involving exons 14-21 of F8. Among the 11 HB patients, HB-LRS analysis detected 11 SNVs/InDels in F9, consistent with routine methods. CONCLUSIONS: Targeted LRS-based analysis is efficient and comprehensive to identify SNVs/InDels and genomic rearrangements of haemophilia genes, especially we first expanding the panel including F9. However, further investigation for complex gross rearrangement is still essential.

3.
Angew Chem Int Ed Engl ; : e202411659, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150899

RESUMO

Designing an efficient modification molecule to mitigate non-radiative recombination at the NiOx/perovskite interface and improve perovskite quality represents a challenging yet crucial endeavor for achieving high-performance inverted perovskite solar cells (PSCs). Herein, we synthesized a novel fullerene-based hole transport molecule, designated as FHTM, by integrating C60 with 12 carbazole-based moieties, and applied it as a modification molecule at the NiOx/perovskite interface. The in-situ self-doping effect, triggered by electron transfer between carbazole-based moiety and C60 within the FHTM molecule, along with the extended π conjugated moiety of carbazole groups, significantly enhances FHTM's hole mobility. Coupled with optimized energy level alignment and enhanced interface interactions, the FHTM significantly enhances hole extraction and transport in corresponding devices. Additionally, the introduced FHTM efficiently promotes homogeneous nucleation of perovskite, resulting in high-quality perovskite films. These combined improvements led to the FHTM-based PSCs yielding a champion efficiency of 25.58% (Certified: 25.04%), notably surpassing that of the control device (20.91%). Furthermore, the unencapsulated device maintained 93% of its initial efficiency after 1000 hours of maximum power point tracking under continuous one-sun illumination. This study highlights the potential of functionalized fullerenes as hole transport materials, opening up new avenues for their application in the field of PSCs.

4.
ACS Nano ; 18(22): 14696-14707, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38780914

RESUMO

Surface defect passivation and carrier injection regulation have emerged as effective strategies for enhancing the performance of perovskite light-emitting diodes (Pero-LEDs). It usually requires two functional molecules to realize defect passivation and carrier injection regulation separately. In other words, developing one single molecule possessing these capabilities remains challenging. Herein, we utilized π-conjugated fluorene derivatives as surface treatment materials, 9,9-Spirobi[fluorene] (SBF), 9,9-Spirobifluoren-2-yl-diphenylphosphine oxide (SPPO1), and 2,7-bis(diphenylphosphoryl)-9,9'-spirobifluorene (SPPO13), to investigate the influence of their chemical structure on device optoelectronic performance, especially for defect passivation and carrier injection regulation. Consequently, the passivation capability of double-bonded SPPO13 surpassed single-bonded SPPO1 and nonbonded SBF, which all showed excellent electron transport properties, enhancing electron injection. The maximum external quantum efficiencies (EQE) for Pero-LEDs treated with SBF, SPPO1, and SPPO13 were 8.13, 17.48, and 22.10%, respectively, exceeding that of the derivative-free device (6.55%). Notably, SPPO13-treated devices exhibited exceptional reproducibility, yielding an average EQE of 20.00 ± 1.10% based on 30 devices. This result emphasizes the potential of tailored fluorene derivatives for enhancing the device performance of Pero-LEDs.

5.
BMC Genomics ; 25(1): 526, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38807051

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a complicated neurodegenerative disease. Neuron-glial cell interactions are an important but not fully understood process in the progression of AD. We used bioinformatic methods to analyze single-nucleus RNA sequencing (snRNA-seq) data to investigate the cellular and molecular biological processes of AD. METHOD: snRNA-seq data were downloaded from Gene Expression Omnibus (GEO) datasets and reprocessed to identify 240,804 single nuclei from healthy controls and patients with AD. The cellular composition of AD was further explored using Uniform Manifold Approximation and Projection (UMAP). Enrichment analysis for the functions of the DEGs was conducted and cell development trajectory analyses were used to reveal underlying cell fate decisions. iTALK was performed to identify ligand-receptor pairs among various cell types in the pathological ecological microenvironment of AD. RESULTS: Six cell types and multiple subclusters were identified based on the snRNA-seq data. A subcluster of neuron and glial cells co-expressing lncRNA-SNHG14, myocardin-related transcription factor A (MRTFA), and MRTFB was found to be more abundant in the AD group. This subcluster was enriched in mitogen-activated protein kinase (MAPK)-, immune-, and apoptosis-related pathways. Through molecular docking, we found that lncRNA-SNHG14 may bind MRTFA and MRTFB, resulting in an interaction between neurons and glial cells. CONCLUSIONS: The findings of this study describe a regulatory relationship between lncRNA-SNHG14, MRTFA, and MRTFB in the six main cell types of AD. This relationship may contribute to microenvironment remodeling in AD and provide a theoretical basis for a more in-depth analysis of AD.


Assuntos
Doença de Alzheimer , Neuroglia , Neurônios , Análise de Célula Única , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Humanos , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/metabolismo , Microambiente Celular/genética , Biologia Computacional/métodos
6.
Angew Chem Int Ed Engl ; 63(20): e202402775, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38468414

RESUMO

Tin-based perovskite solar cells (TPSCs) have received increasing attention due to their low toxicity, high theoretical efficiency, and potential applications as wearable devices. However, the inherent fast and uncontrollable crystallization process of tin-based perovskites results in high defect density in the film. Meanwhile, when fabricated into flexible devices, the prepared perovskite film exhibits inevitable brittleness and high Young's modulus, seriously weakening the mechanical stability. In this work, we design and synthesize a cross-linkable fullerene, thioctic acid functionalized C60 fulleropyrrolidinium iodide (FTAI), which has multiple interactions with perovskite components and can finely regulate the crystallization quality of perovskite film. The obtained perovskite film shows an increased grain size and a more matched energy level with the electron transport material, effectively improving the carrier extraction efficiency. The FTAI-based rigid device achieves a champion efficiency of 14.91 % with enhanced stability. More importantly, the FTAI located at the perovskite grain boundaries could spontaneously cross-link during the perovskite annealing process, which effectively improves the conductivity and elasticity of grain boundaries, thereby giving the film excellent bending resistance. Finally, the FTAI-based wearable device yields a record efficiency of 12.35 % and displays robust bending durability, retaining about 90 % of the initial efficiency after 10,000 bending times.

7.
Pharmacol Res ; 201: 107098, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325728

RESUMO

Neuronal death is one of the key pathologies in Alzheimer's disease (AD). How neuronal death begins in AD is far from clear, so clarifying this process may help develop effective therapies. This study collected single-cell RNA sequencing data of 85 AD samples and 83 control samples, covering the prefrontal cortex, internal olfactory cortex, superior parietal lobe, superior frontal gyrus, caudal internal olfactory cortex, somatosensory cortex, hippocampus, superior frontal cortex and peripheral blood mononuclear cells. Additionally, spatial transcriptomic data of coronal sections from 6 AppNL-G-F AD mice and 6 control C57Bl/6 J mice were acquired. The main single-cell and spatial transcriptomics results were experimentally validated in wild type and 5 × FAD mice. We found that the microglia subpopulation Mic_PTPRG can communicate with specific types of neurons (especially excitatory ExNeu_PRKN_VIRMA and inhibitory InNeu_PRKN_VIRMA neuronal subpopulations) and cause them to express PTPRG during AD progression. Within neurons, PTPRG binds and upregulates the m6A methyltransferase VIRMA, thus inhibiting translation of PRKN mRNA to prevent the clearance of damaged mitochondria in neurons through suppressing mitophagy. As the disease progresses, the energy and nutrient metabolic pathways in neurons are reprogrammed, leading to their death. Consistently, we determined that PTPTRG can physically interact with VIRMA in mouse brains and PRKN is significantly upregulated in 5 × FAD mouse brain. Altogether, our findings demonstrate that PTPRG activates the m6A methyltransferase VIRMA to block mitophagy-mediated neuronal death in AD, which is a potential pathway, through which microglia and neuronal PTPRG modify neuronal connections in the brain during AD progression.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Doença de Alzheimer/genética , Leucócitos Mononucleares , Mitofagia , Perfilação da Expressão Gênica , Metiltransferases , Camundongos Endogâmicos C57BL
8.
Nano Lett ; 23(18): 8560-8567, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37676859

RESUMO

Efficient charge injection and radiative recombination are essential to achieving high-performance perovskite light-emitting diodes (Pero-LEDs). However, the perovskite emission layer (EML) and the electron transport layer (ETL) form a poor physically interfacial contact and non-negligible charge injection barrier, limiting the device performance. Herein, we utilize a phosphine oxide, 2,4,6-tris[3-(diphenylphosphinyl)phenyl]-1,3,5-triazine (PO-T2T), to treat the perovskite/ETL interface and form a chemically bonded contact. Specifically, PO-T2T firmly bonds on the perovskite's surface and grain boundaries through a dative bond, effectively passivating the uncoordinated lead defects. Additionally, PO-T2T has high electron mobility and establishes an electron transport highway to bridge the ETL and EML. As a result, a maximum external quantum efficiency (EQEmax) of 22.06% (average EQEmax of 20.02 ± 1.00%) and maximum luminance (Lmax) of 103286 cd m-2 have been achieved for the champion device. Our results indicate that EML/ETL interface modifications are crucial for the fabrication of highly efficient Pero-LEDs.

9.
J Biol Eng ; 17(1): 50, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37533068

RESUMO

INTRODUCTION: Ischemic stroke accounts for 70-80% of all stroke cases, leading to over two million people dying every year. Poor diagnosis and late detection are the major causes of the high death and disability rate. METHODS: In the present study, we used the middle cerebral artery occlusion (MCAO) rat model and applied comparative transcriptomic analysis, followed by a systematic advanced bioinformatic analysis, including gene ontology enrichment analysis and Ingenuity Pathway Analysis (IPA). We aimed to identify novel biomarkers for the early detection of ischemic stroke. In addition, we aimed to delineate the molecular mechanisms underlying the development of ischemic stroke, in which we hoped to identify novel therapeutic targets for treating ischemic stroke. RESULTS: In the comparative transcriptomic analysis, we identified 2657 differentially expressed genes (DEGs) in the brain tissue of the MCAO model. The gene enrichment analysis highlighted the importance of these DEGs in oxygen regulation, neural functions, and inflammatory and immune responses. We identified the elevation of angiopoietin-2 and leptin receptor as potential novel biomarkers for early detection of ischemic stroke. Furthermore, the result of IPA suggested targeting the inflammasome pathway, integrin-linked kinase signaling pathway, and Th1 signaling pathway for treating ischemic stroke. CONCLUSION: The results of the present study provide novel insight into the biomarkers and therapeutic targets as potential treatments of ischemic stroke.

10.
BMC Med Res Methodol ; 23(1): 175, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37525117

RESUMO

OBJECTIVES: The main objective of this study is to evaluate the methodological quality and reporting quality of living systematic reviews (LSRs) on Coronavirus disease 2019 (COVID-19), while the secondary objective is to investigate potential factors that may influence the overall quality of COVID-19 LSRs. METHODS: Six representative databases, including Medline, Excerpta Medica Database (Embase), Cochrane Library, China national knowledge infrastructure (CNKI), Wanfang Database, and China Science, Technology Journal Database (VIP) were systematically searched for COVID-19 LSRs. Two authors independently screened articles, extracted data, and then assessed the methodological and reporting quality of COVID-19 LSRs using the "A Measurement Tool to Assess systematic Reviews-2" (AMSTAR-2) tool and "Preferred Reporting Items for Systematic reviews and Meta-Analyses" (PRISMA) 2020 statement, respectively. Univariate linear regression and multivariate linear regression were used to explore eight potential factors that might affect the methodological quality and reporting quality of COVID-19 LSRs. RESULTS: A total of 64 COVID-19 LSRs were included. The AMSTAR-2 evaluation results revealed that the number of "yes" responses for each COVID-19 LSR was 13 ± 2.68 (mean ± standard deviation). Among them, 21.9% COVID-19 LSRs were rated as "high", 4.7% as "moderate", 23.4% as "low", and 50% as "critically low". The evaluation results of the PRISMA 2020 statement showed that the sections with poor adherence were methods, results and other information. The number of "yes" responses for each COVID-19 LSR was 21 ± 4.18 (mean ± standard deviation). The number of included studies and registration are associated with better methodological quality; the number of included studies and funding are associated with better reporting quality. CONCLUSIONS: Improvement is needed in the methodological and reporting quality of COVID-19 LSRs. Researchers conducting COVID-19 LSRs should take note of the quality-related factors identified in this study to generate evidence-based evidence of higher quality.


Assuntos
COVID-19 , Revisões Sistemáticas como Assunto , Humanos , China/epidemiologia , Estudos Transversais , Projetos de Pesquisa
11.
Semin Cancer Biol ; 91: 110-123, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36907387

RESUMO

Glioma represents a dominant primary intracranial malignancy in the central nervous system. Artificial intelligence that mainly includes machine learning, and deep learning computational approaches, presents a unique opportunity to enhance clinical management of glioma through improving tumor segmentation, diagnosis, differentiation, grading, treatment, prediction of clinical outcomes (prognosis, and recurrence), molecular features, clinical classification, characterization of the tumor microenvironment, and drug discovery. A growing body of recent studies apply artificial intelligence-based models to disparate data sources of glioma, covering imaging modalities, digital pathology, high-throughput multi-omics data (especially emerging single-cell RNA sequencing and spatial transcriptome), etc. While these early findings are promising, future studies are required to normalize artificial intelligence-based models to improve the generalizability and interpretability of the results. Despite prominent issues, targeted clinical application of artificial intelligence approaches in glioma will facilitate the development of precision medicine of this field. If these challenges can be overcome, artificial intelligence has the potential to profoundly change the way patients with or at risk of glioma are provided with more rational care.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Inteligência Artificial , Glioma/diagnóstico , Glioma/genética , Glioma/terapia , Aprendizado de Máquina , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Medicina de Precisão , Microambiente Tumoral
12.
Front Genet ; 14: 1246712, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38174045

RESUMO

Vascular Ehlers-Danlos syndrome (vEDS), the most severe type of Ehlers-Danlos syndrome, is caused by an autosomal-dominant defect in the COL3A1 gene. In this report, we describe the clinical history, specific phenotype, and genetic diagnosis of a man who died of vEDS. The precise diagnosis of this case using whole-exome sequencing provided solid evidence for the cause of death, demonstrating the practical value of genetic counseling and analysis. Early diagnosis for the proband's son, who was also affected by vEDS, revealed initial complications of vEDS in early childhood, which have rarely been reported. We also reviewed the literature on COL3A1 missense mutations and related phenotypes. We identified an association between digestion tract events and non-glycine missense variants, which disproves a previous hypothesis regarding the genotype-phenotype correlation of vEDS. Our results demonstrate the necessity of offering comprehensive genetic testing for every patient suspected of having vEDS.

13.
Front Neurol ; 13: 992396, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353136

RESUMO

Objective: The aim of this study was to evaluate the effectiveness and safety of rescue therapy, a therapy in which rescue devices such as balloon angioplasty, Apollo stent, Wingspan stent, Solitaire stent, or other self-expanding stents are used after the failure of mechanical thrombectomy (MT) and to determine the most effective rescue measure for acute basilar artery occlusion (BAO) after the failure of MT. Methods: For this study, we recruited patients from the BASILAR registry. All participants were divided into three groups: the recanalized with rescue therapy group, the recanalized without rescue therapy group, and the non-recanalized group. Clinical outcomes at 90 days and 1 year were compared. The association of rescue measures with favorable outcomes (modified Rankin Scale [mRS] score of 0-3) in patients achieving successful recanalization via rescue therapy was estimated using multivariate logistic regression analyses. Results: Among the participants, recanalization failure was found in 112 patients and successful recanalization in 473 patients, with 218 patients receiving rescue therapy and 255 patients without rescue therapy. Of these, 111 (43.5%) patients in the recanalized without rescue therapy group, 65 (29.8%) patients in the recanalized with rescue therapy group, and nine (8.0%) patients in the non-recanalized group achieved favorable outcomes at 90 days. Both the recanalization with rescue therapy and the recanalization without rescue therapy groups were associated with favorable outcomes at 90 days and 1 year compared with the non-recanalized group. Moreover, in patients receiving rescue therapy, Wingspan stents, Apollo stents, and balloon angioplasty were associated with higher rates of favorable outcomes at 90 days and 1 year than Solitaire stents. Conclusion: Whether rescue therapy is administered or not, recanalization leads to favorable outcomes in patients with acute BAO. For acute BAO after MT failure, balloon angioplasty, Wingspan stenting, and Apollo stenting could be considered effective and safe rescue options but not Solitaire stenting.

14.
Front Mol Neurosci ; 15: 996107, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36299860

RESUMO

Background: Cerebral small vessel disease (CSVD) is associated with the pathogenesis of Alzheimer's disease (AD). Effective treatments to alleviate AD are still not currently available. Hence, we explored markers and underlying molecular mechanisms associated with AD by utilizing gene expression profiles of AD and CSVD patients from public databases, providing more options for early diagnosis and its treatment. Methods: Gene expression profiles were collected from GSE63060 (for AD) and GSE162790 (for CSVD). Differential analysis was performed between AD and mild cognitive impairment (MCI) or CSVD progression and CSVD no-progression. In both datasets, differentially expressed genes (DEGs) with the same expression direction were identified as common DEGs. Then protein-protein interaction (PPI) network was constructed for common DEGs. Differential immune cells and checkpoints were calculated between AD and MCI. Results: A total of 146 common DEGs were identified. Common DEGs were mainly enriched in endocytosis and oxytocin signaling pathways. Interestingly, endocytosis and metabolic pathways were shown both from MCI to AD and from CSVD no-progression to CSVD progression. Moreover, SIRT1 was identified as a key gene by ranking degree of connectivity in the PPI network. SIRT1 was associated with obesity-related genes and metabolic disorders. Additionally, SIRT1 showed correlations with CD8 T cells, NK CD56 bright cells, and checkpoints in AD. Conclusion: The study revealed that the progression of AD is associated with abnormalities in gene expression and metabolism and that the SIRT1 gene may serve as a promising therapeutic target for the treatment of AD.

15.
Front Nutr ; 9: 999426, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118760

RESUMO

Stroke is the second leading cause of death and a major cause of disability worldwide. Ischemic stroke caused by atherosclerosis accounts for approximately 87% of all stroke cases. Ischemic stroke is a preventable disease; therefore, a better understanding of the molecular mechanisms underlying its pathogenesis and recovery processes could provide therapeutic targets for drug development and reduce the associated mortality rate. Laminarin, a polysaccharide, is a nutraceutical that can be found in brown algae. Accumulating evidence suggests that laminarin could reduce the detrimental effects of neuroinflammation on brain damage after stroke. However, the molecular mechanism underlying its beneficial effects remains largely unknown. In the present study, we used a middle cerebral artery occlusion (MCAO) rat model and applied comparative transcriptomics to investigate the molecular targets and pathways involved in the beneficial effects of laminarin on ischemic stroke. Our results show the involvement of laminarin targets in biological processes related to blood circulation, oxygen supply, and anti-inflammatory responses in the normal brain. More importantly, laminarin treatment attenuated brain damage and neurodeficits caused by ischemic stroke. These beneficial effects are controlled by biological processes related to blood vessel development and brain cell death through the regulation of canonical pathways. Our study, for the first time, delineated the molecular mechanisms underlying the beneficial effects of laminarin on ischemic stroke prevention and recovery and provides novel therapeutic targets for drug development against ischemic stroke.

16.
Clin Epidemiol ; 14: 925-935, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958161

RESUMO

Purpose: The systematic review aims to analyze and summarize the characteristics of living systematic review (LSR) for coronavirus disease 2019 (COVID-19). Methods: Six databases including Medline, Excerpta Medica (Embase), Cochrane Library, China National Knowledge Infrastructure (CNKI), Wanfang Database and China Science, and Technology Journal Database (VIP), were searched as the source of basic information and methodology of LSR. Descriptive analytical methods were used to analyze the included COVID-19 LSRs, and the study characteristics of COVID-19 LSRs were further assessed. Results: Sixty-four COVID-19 LSRs were included. Eighty-nine point one percent of LSRs were published on Science Citation Index (SCI) journals, and 64.1% publication with an impact factor (IF) >5 and 17.2% with an IF >15 among SCI journals. The first unit of the published LSRs for COVID-19 came from 19 countries, with the largest contribution from the UK (17.2%, 11/64). Forty point six percent of LSRs for COVID-19 were related to therapeutics topic which was considered the most concerned perspective for LSRs for COVID-19. Seventy-six point six percent of LSRs focused on the general population, with less attention to children, pregnant women and the elderly. However, the LSR for COVID-19 was reported incomplete on "living" process, including 40.6% of studies without search frequency, 79.7% of studies without screening frequency, 20.3% of studies without update frequency, and 65.6% of studies without the timing or criteria of transitioning LSR out of living mode. Conclusion: Although researchers in many countries have applied LSRs to COVID-19, most of the LSRs for COVID-19 were incomplete in reporting on the "living" process and less focused on special populations. This could reduce the confidence of health-care providers and policy makers in the results of COVID-19 LSR, thereby hindering the translation of evidence on COVID-19 LSR into clinical practice. It was necessary to explicitly enact preferred reporting items for systematic reviews and meta-analyses (PRISMA) to improve the reporting quality of LSR and support ongoing efforts of therapeutics research for special patients with COVID-19.

17.
Front Pharmacol ; 13: 915698, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35979236

RESUMO

Background: Prelabor rupture of membranes (PROM) is associated with maternal and neonatal infections. Although guidelines suggest prophylactic antibiotics for pregnant women with PROM, the optimal antibiotic regimen remains controversial. Synthesizing the data from different studies is challenging due to variations in reported outcomes. Objective: This study aimed to form the initial list of outcomes for the core outcome set (COS) that evaluates antibiotic use in PROM by identifying all existing outcomes and patients' views. Methods: Relevant studies were identified by searching PubMed, EMBASE, Cochrane Library, Chinese National Knowledge Infrastructure, Wanfang, and VIP databases. We also screened the references of the included studies as a supplementary search. We extracted basic information from the articles and the outcomes. Two reviewers independently selected the studies, extracted the data, extracted the outcomes, and grouped them into domains. Then, semi-structured interviews based on the potential factors collected by the systematic review were conducted at West China Second Hospital of Sichuan University. Pregnant women who met the diagnostic criteria for PROM were enrolled. Participants reported their concerns about the outcomes. Two researchers identified the pregnant women's concerns. Results: A total of 90 studies were enrolled in this systematic review. The median outcomes in the included studies was 7 (1-31), and 109 different unique outcomes were identified. Pre-term PROM (PPROM) had 97 outcomes, and term PROM (TPROM) had 70 outcomes. The classification and order of the core outcome domains of PPROM and TPROM were consistent. The physiological domain was the most common for PPROM and TPROM outcomes. Furthermore, 35.1 and 57.1% outcomes were only reported once in PPROM and TPROM studies, respectively. Thirty pregnant women participated in the semi-structured interviews; 10 outcomes were extracted after normalized, and the outcomes were reported in the systematic review. However, studies rarely reported pregnant women's concerns. Conclusion: There was considerable inconsistency in outcomes selection and reporting in studies about antibiotics in PROM. An initial core outcomes set for antibiotics in PROM was formed.

18.
Front Mol Neurosci ; 15: 913328, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875673

RESUMO

Background: Glioblastoma (GBM) is the most common malignant primary brain tumor, which associated with extremely poor prognosis. Methods: Data from datasets GSE16011, GSE7696, GSE50161, GSE90598 and The Cancer Genome Atlas (TCGA) were analyzed to identify differentially expressed genes (DEGs) between patients and controls. DEGs common to all five datasets were analyzed for functional enrichment and for association with overall survival using Cox regression. Candidate genes were further screened using least absolute shrinkage and selection operator (LASSO) and random forest algorithms, and the effects of candidate genes on prognosis were explored using a Gaussian mixed model, a risk model, and concordance cluster analysis. We also characterized the GBM landscape of immune cell infiltration, methylation, and somatic mutations. Results: We identified 3,139 common DEGs, which were associated mainly with PI3K-Akt signaling, focal adhesion, and Hippo signaling. Cox regression identified 106 common DEGs that were significantly associated with overall survival. LASSO and random forest algorithms identified six candidate genes (AEBP1, ANXA2R, MAP1LC3A, TMEM60, PRRG3 and RPS4X) that predicted overall survival and GBM recurrence. AEBP1 showed the best prognostic performance. We found that GBM tissues were heavily infiltrated by T helper cells and macrophages, which correlated with higher AEBP1 expression. Stratifying patients based on the six candidate genes led to two groups with significantly different overall survival. Somatic mutations in AEBP1 and modified methylation of MAP1LC3A were associated with GBM. Conclusion: We have identified candidate genes, particularly AEBP1, strongly associated with GBM prognosis, which may help in efforts to understand and treat the disease.

19.
Front Aging Neurosci ; 14: 894824, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813961

RESUMO

Vascular dementia (VD) and Alzheimer's disease (AD) are common types of dementia for which no curative therapies are known. In this study, we identified hub genes associated with AD and VD in order to explore new potential therapeutic targets. Genes differentially expressed in VD and AD in all three datasets (GSE122063, GSE132903, and GSE5281) were identified and used to construct a protein-protein interaction network. We identified 10 modules containing 427 module genes in AD and VD. Module genes showing an area under the diagnostic curve > 0.60 for AD or VD were used to construct a least absolute shrinkage and selection operator model and were entered into a support vector machine-recursive feature elimination algorithm, which identified REPS1 as a hub gene in AD and VD. Furthermore, REPS1 was associated with activation of pyruvate metabolism and inhibition of Ras signaling pathway. Module genes, together with differentially expressed microRNAs from the dataset GSE46579, were used to construct a regulatory network. REPS1 was predicted to bind to the microRNA hsa_miR_5701. Single-sample gene set enrichment analysis was used to explore immune cell infiltration, which suggested a negative correlation between REPS1 expression and infiltration by plasmacytoid dendritic cells in AD and VD. In conclusion, our results suggest core pathways involved in both AD and VD, and they identify REPS1 as a potential biomarker of both diseases. This protein may aid in early diagnosis, monitoring of treatment response, and even efforts to prevent these debilitating disorders.

20.
Artigo em Inglês | MEDLINE | ID: mdl-35529920

RESUMO

Purpose: To systematically evaluate the safety and effectiveness of different dosages of recombinant human interferon α1b (IFNα1b) inhaled for bronchiolitis in children. Methods: 7 databases, including PubMed, EMBASE, Cochrane Library, Web of Science, CNKI, Wanfang Database, and VIP, were searched. The search time was from their inception dates to March 28, 2022. A randomized controlled trial (RCT) of 2 µg/kg IFNα1b (low dosage group) monotherapy or in combination with other drugs vs. 4 µg/kg IFNα1b (high dosage group) monotherapy or in combination with the other drugs was included. The risk of bias 2.0 evaluated the RCT's quality, and the grading of recommendations assessment, development and evaluation (GRADE) tool was used for evaluating the overall quality of the evidence. Then, a meta-analysis was performed by RevMan 5.4. Results: A total of 13 RCTs with 1719 children were included. The meta-analysis results showed that the high dosage group was significantly shorter than the low dosage group of the duration of hospital stays (MD = -0.40, 95%CI (-0.73, -0.07), P = 0.02) (low quality), three depressions sign disappearing time (MD = -0.60, 95%CI (-1.05, -0.14), P = 0.010) (low quality), and wheeze disappearing time (MD = -0.62, 95%CI (-1.17, -0.06), = 0.03) (low quality). There was no significant difference between the two groups in coughing disappearing time, pulmonary rales disappearing time, wheezing sound disappearing time, or adverse event rates. Conclusions: Compared with low dosage IFNα1b, high dosage IFNα1b reduces the duration of hospital stays, the disappearance time of the three depression signs, and the disappearance time of wheeze in the treatment of bronchiolitis in children. Limited by the low quality of the evidence, the conclusions still need to be supported by high-quality studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA