Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int Wound J ; 21(4): e14807, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38591163

RESUMO

Skin Cutaneous Melanoma (SKCM) is a form of cancer that originates in the pigment-producing cells, known as melanocytes, of the skin. Delay wound healing is often correlated with the occurrence of and progression of SKCM. In this comprehensive study, we investigated the intricate roles of two important wound healing genes in SKCM, including Matrix Metalloproteinase-2 (MMP2) and Matrix Metalloproteinase-9 (MMP9). Through a multi-faceted approach, we collected clinical samples, conducted molecular experiments, including RT-qPCR, bisulphite sequencing, cell culture, cell Counting Kit-8, colony formation, and wound healing assays. Beside this, we also used various other databases/tools/approaches for additional analysis including, UALCAN, GEPIA, HPA, MEXPRESS, cBioPortal, KM plotter, DrugBank, and molecular docking. Our results revealed a significant up-regulation of MMP2 and MMP9 in SKCM tissues compared to normal counterparts. Moreover, promoter methylation analysis suggested an epigenetic regulatory mechanism. Validations using TCGA datasets and immunohistochemistry emphasized the clinical relevance of MMP2 and MMP9 dysregulation. Functional assays demonstrated their synergistic impact on proliferation and migration in SKCM cells. Furthermore, we identified potential therapeutic candidates, Estradiol and Calcitriol, through drug prediction and molecular docking analyses. These compounds exhibited binding affinities, suggesting their potential as MMP2/MMP9 inhibitors. Overall, our study elucidates the diagnostic, prognostic, and therapeutic implications of MMP2 and MMP9 in SKCM, shedding light on their complex interplay in SKCM occurrence and progression.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/genética , Melanoma/terapia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/terapia , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz , Simulação de Acoplamento Molecular , Cicatrização/genética , Mutação , Metilação
2.
Int J Biol Macromol ; 254(Pt 3): 127724, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37898252

RESUMO

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.

3.
Am J Transl Res ; 15(10): 6026-6041, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37969191

RESUMO

OBJECTIVES: Cancer remains a global health challenge, necessitating the identification of novel biomarkers and therapeutic targets. Cuproptosis, a recently recognized form of cell death linked to copper metabolism, presents a promising avenue for anticancer strategies. We investigated the clinical significance of SLC31A1, a key regulator of cuproptosis, in multiple cancer types, aiming to elucidate its potential as a diagnostic biomarker, prognostic, indicator and therapeutic target. METHODS: We conducted a pan-cancer analysis through TIMER2.0, evaluating SLC31A1 expression across multiple cancer types. Survival analysis was performed using KM plotter. Expression validation was carried out using UALCAN and Human Protein Atlas (HPA) databases. Methylation analysis was conducted with the help of ULACAN and OncoDB. Mutational analysis was performed using cBioPortal database. Immune infiltration analysis via the TIMER2.0 and gene enrichment analysis via the Metascape were performed to gain insights into the potential mechanisms underlying SLC31A1's role in cancer. Finally, Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was employed to confirm SLC31A1 expression in clinical samples. RESULTS: Out of analyzed cancer, SLC31A1 exhibited significant up-regulation and correlation with worse overall survival (OS) across Breast Cancer (BRCA), Cervical Squamous Cell Carcinoma (CESC), Head and Neck Squamous Cell Carcinoma (HNSC), and Esophageal Carcinoma (ESCA). Mutational and promoter methylation analyses further revealed that hypomethylation is the major cause of SLC31A1 overexpression among BRCA, CESC, HNSC, and ESCA. Immune infiltration analysis showed significant associations between SLC31A1 expression and the presence of CD8+ T cells, CD4+ T cells, and macrophages in the tumor microenvironment. Gene enrichment analysis provided valuable insights into potential molecular pathways in context to BRCA, CESC, HNSC, and ESCA. Furthermore, when SLC31A1 was analyzed using clinical samples through RT-qPCR, this gene showed promising diagnostic potential, reflected by high Area Under the Curve (AUC) values. CONCLUSION: Our pan-cancer study highlights the up-regulation of SLC31A1 and its correlation with worse OS in BRCA, CESC, HNSC, and ESCA. In sum, outcomes of this study showed that SLC31A1 could be a potential biomarker and novel therapeutic target of BRCA, CESC, HNSC, and ESCA.

4.
Microbiol Spectr ; 11(4): e0447222, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37428080

RESUMO

Senecavirus A (SVA) is a type of nonenveloped single-stranded, positive-sense RNA virus. The VP2 protein is a structural protein that plays an important role in inducing early and late immune responses of the host. However, its antigenic epitopes have not been fully elucidated. Therefore, defining the B epitopes of the VP2 protein is of great importance to revealing its antigenic characterization. In this study, we analyzed B-cell immunodominant epitopes (IDEs) of the VP2 protein from the SVA strain CH/FJ/2017 using the Pepscan approach and a bioinformatics-based computational prediction method. The following four novel IDEs of VP2 were identified: IDE1, 41TKSDPPSSSTDQPTTT56; IDE2, 145PDGKAKSLQELNEEQW160; IDE3, 161VEMSDDYRTGKNMPF175; and IDE4, 267PYFNGLRNRFTTGT280. Most of the IDEs were highly conserved among the different strains. To our knowledge, the VP2 protein is a major protective antigen of SVA that can induce neutralizing antibodies in animals. Here, we analyzed the immunogenicity and neutralization activity of four IDEs of VP2. Consequently, all four IDEs showed good immunogenicity that could elicit specific antibodies in guinea pigs. A neutralization test in vitro showed that the peptide-specific guinea pig antisera of IDE2 could neutralize SVA strain CH/FJ/2017, and IDE2 was identified as a novel potential neutralizing linear epitope. This is the first time VP2 IDEs have been identified by using the Pepscan method and a bioinformatics-based computational prediction method. These results will help elucidate the antigenic epitopes of VP2 and clarify the basis for immune responses against SVA. IMPORTANCE The clinical symptoms and lesions caused by SVA are indistinguishable from those of other vesicular diseases in pigs. SVA has been associated with recent outbreaks of vesicular disease and epidemic transient neonatal losses in several swine-producing countries. Due to the continuing spread of SVA and the lack of commercial vaccines, the development of improved control strategies is urgently needed. The VP2 protein is a crucial antigen on the capsids of SVA particles. Furthermore, the latest research showed that VP2 could be a promising candidate for the development of novel vaccines and diagnostic tools. Hence, a detailed exploration of epitopes in the VP2 protein is necessary. In this study, four novel B-cell IDEs were identified using two different antisera with two different methods. IDE2 was identified as a new neutralizing linear epitope. Our findings will help in the rational design of epitope vaccines and further understanding of the antigenic structure of VP2.


Assuntos
Proteínas do Capsídeo , Epitopos de Linfócito B , Animais , Cobaias , Proteínas do Capsídeo/genética , Epitopos de Linfócito B/genética , Anticorpos Antivirais , Soros Imunes
5.
Appl Microbiol Biotechnol ; 107(15): 4903-4915, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37314455

RESUMO

Canine parvovirus (CPV) is an acute and highly infectious virus causing disease in puppies and, thus, affecting the global dog industry. The current CPV detection methods are limited by their sensitivity and specificity. Hence, the current study sought to develop a rapid, sensitive, simple, and accurate immunochromatographic (ICS) test to detect and control the spread and prevalence of CPV infection. More specifically, 6A8, a monoclonal antibody (mAb) with high specificity and sensitivity, was obtained by preliminary screening. The 6A8 antibody was labelled with colloidal gold particles. Subsequently, 6A8 and goat anti-mouse antibodies were coated onto a nitrocellulose membrane (NC) as the test and control lines, respectively. Furthermore, 6A8 and rabbit IgG antibodies were labelled with fluorescent microspheres and evenly sprayed onto a glass fibre membrane. Both strips could be prepared in 15 min with no noticeable cross-reactivity with other common canine intestinal pathogens. The strips were simultaneously used to detect CPV in 60 clinical samples using real-time quantitative PCR, hemagglutination, and hemagglutination inhibition assays. The colloidal gold (fluorescent) ICS test strip was stable for 6 (7) and 4 (5) months at 4 °C and room temperature (18-25 °C). Both test strips were easy to prepare and rapidly detected CPV with high sensitivity and specificity. Moreover, the results were easily interpretable. This study establishes a simple method for two CPV diseases, colloidal gold and fluorescent immunochromatographic (ICS) test strips. KEY POINTS: • CPV test strips do not exhibit cross-reactivity with other canine intestinal pathogens. • The strips are stable for months at 4 °C and at room temperature (18-25 °C). • These strips are a promising approach for the timely diagnosis and treatment of CPV.


Assuntos
Parvovirus Canino , Coelhos , Animais , Cães , Coloide de Ouro/química , Sensibilidade e Especificidade , Testes Imunológicos , Corantes , Cromatografia de Afinidade/métodos
6.
Appl Microbiol Biotechnol ; 107(11): 3779-3788, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37099055

RESUMO

The p30 protein is abundantly expressed in the early stage of African swine fever virus (ASFV) infection. Thus, it is an ideal antigen candidate for serodiagnosis with the use of an immunoassay. In this study, a chemiluminescent magnetic microparticle immunoassay (CMIA) was developed for the detection of antibodies (Abs) against ASFV p30 protein in porcine serum. Purified p30 protein was coupled to magnetic beads, and the experimental conditions including concentration, temperature, incubation time, dilution ratio, buffers, and other relevant variables were evaluated and optimized. To evaluate the performance of the assay, a total of 178 pig serum samples (117 negative and 61 positive samples) were tested. According to receiver operator characteristic curve analysis, the cut-off value of the CMIA was 104,315 (area under the curve, 0.998; Youden's index, 0.974; 95% confidence interval: 99.45 to 100%). Sensitivity results showed that the dilution ratio of p30 Abs in ASFV-positive sera detected by the CMIA is much higher when compared to commercial blocking ELISA kit. Specificity testing showed that no cross-reactivity was observed with sera positive for other porcine disease viruses. The intraassay coefficient of variation (CV) was < 5%, and the interassay CV was < 10%. The p30-magnetic beads could be stored at 4 °C for more than 15 months without loss of activity. The kappa coefficient between CMIA and INGENASA blocking ELISA kit was 0.946, showing strong agreement. In conclusion, our method showed superiority with high sensitivity, specificity, reproducibility, and stability and potentialized its application in the development of a diagnostic kit for the detection of ASF in clinical samples. KEY POINTS: • ASFV tag-free p30 was successfully purified. • High sensitivity, specificity, relatively simple, and time-saving to detect antibody against ASFV were developed. • The development of CMIA will help the clinical diagnosis of ASFV and will be useful for large-scale serological test.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Reprodutibilidade dos Testes , Febre Suína Africana/diagnóstico , Imunoensaio/métodos , Anticorpos Antivirais , Fenômenos Magnéticos
7.
Appl Microbiol Biotechnol ; 106(3): 1199-1210, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35089400

RESUMO

African swine fever virus (ASFV) causes acute, febrile, and highly contagious diseases in swine. Early diagnosis is critically important for African swine fever (ASF) prevention and control in the absence of an effective vaccine. P30 is one of the most immunogenic proteins that are produced during the early stage of an ASFV infection. This makes P30 a good serological target for ASF detection and surveillance. In this study, two P30-reactive monoclonal antibodies (mAbs), 2H2 and 5E8, were generated from mice immunized with recombinant P30 protein (rP30). Epitope mapping was performed with overlapping polypeptides, alanine mutants, and synthetic peptides. The mapping results revealed that 2H2 recognized a region located in the N-terminal, 16-48 aa. In contrast, 5E8 recognized a linear epitope in the C-terminal, 122-128 aa. Further analysis indicated that the epitope recognized by 2H2 was highly conserved in genotypes I and II, while the 5E8 epitope was conserved in most genotypes and the Ser to Pro change at position 128 in genotypes IV, V, and VI did not affect recognition. Overall, the results of this study provide valuable information on the antigenic regions of ASFV P30 and lay the foundation for the serological diagnosis of ASF and vaccine research. KEY POINTS: • Two specific and reactive mAbs were prepared and their epitopes were identified. • 2H2 recognized a novel epitope highly conserved in genotypes I and II. • 5E8 recognized a seven-amino acid linear epitope highly conserved in most genotypes.


Assuntos
Vírus da Febre Suína Africana , Anticorpos Monoclonais/imunologia , Mapeamento de Epitopos , Proteínas Virais/imunologia , Febre Suína Africana , Vírus da Febre Suína Africana/imunologia , Animais , Anticorpos Antivirais , Epitopos/genética , Camundongos , Suínos
8.
Transbound Emerg Dis ; 69(4): e216-e223, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34370390

RESUMO

African swine fever (ASF) is one of the most severe infectious diseases of pigs. In this study, a loop-mediated isothermal amplification (LAMP) assay coupled with the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a system was established in one tube for the detection of the African swine fever virus (ASFV) p72 gene. The single-stranded DNA-fluorophore quencher reporter and CRISPR-derived RNA were screened and selected for the CRISPR detection system. In combination with LAMP amplification assay, the detection limit for the LAMP-CRISPR assay can reach 7 copies/µl of p72 gene per reaction. Furthermore, this method displays no cross-reactivity with other porcine DNA or RNA viruses. The performance of the LAMP-CRISPR assay was compared with real-time qPCR tests for clinical samples; a good consistency between the LAMP-CRISPR assay and real-time qPCR was observed. The method shed a light on the convenient, portable, low cost, highly sensitive and specific detection of ASFV, demonstrating a great application potential for monitoring on-site ASFV in the field.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Doenças dos Suínos , Febre Suína Africana/diagnóstico , Vírus da Febre Suína Africana/genética , Animais , Sistemas CRISPR-Cas , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Amplificação de Ácido Nucleico/veterinária , Sensibilidade e Especificidade , Suínos , Doenças dos Suínos/genética
9.
Appl Microbiol Biotechnol ; 106(2): 799-810, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34939134

RESUMO

African swine fever (ASF) is an acute and highly contagious infectious disease caused by the African swine fever virus (ASFV). Currently, there is no vaccine against ASF worldwide, and no effective treatment measures are available. For this reason, developing a simple, rapid, specific, and sensitive serological detection method for ASFV antibodies is crucial for the prevention and control of ASF. In this study, a 1:1 mixture of gold-labeled p30 and p72 probes was used as the gold-labeled antigen. The p30 and p72 proteins and their monoclonal antibodies were coated on a nitrocellulose membrane (NC) as a test (T) line and control (C) line, respectively. A colloidal-gold dual immunochromatography strip (ICS) for ASFV p30 and p72 protein antibodies was established. The results showed that the colloidal-gold dual ICS could specifically detect ASFV antibodies within 5-10 min. There was no cross-reaction after testing healthy pig serum; porcine reproductive and respiratory syndrome virus (PRRSV), foot-and-mouth disease type A virus (FMDV-A), foot-and-mouth disease type O virus (FMDV-O), porcine circovirus type 2 (PCV-2), and classical swine fever virus (CSFV) positive sera. A positive result was obtained only for the positive control P1. The sensitivity of the test strips was 1:256, which was equivalent to that of commercially ELISA kits. Their coincidence rate with the two commercial ASFV ELISA antibodies detection kits was higher than 98%. The test strips were stably stored at 18-25 °C and 4 °C for 4 and 6 months, respectively. The colloidal-gold dual ICS prepared in this study had high sensitivity and specificity and were characterized by rapid detection, simple operation, and easy interpretation of results. Therefore, they are of great significance to diagnose, prevent, and control African swine fever. KEY POINTS: • We establish an antibody detection that is quick and can monitor an ASF infection. • We observe changes in two protein antibodies to dynamically monitor ASF infection. • We use diversified detection on a single test strip to detect both antibodies.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Febre Suína Africana/diagnóstico , Animais , Cromatografia de Afinidade , Ensaio de Imunoadsorção Enzimática , Coloide de Ouro , Suínos
10.
Sheng Wu Gong Cheng Xue Bao ; 37(9): 3211-3220, 2021 Sep 25.
Artigo em Chinês | MEDLINE | ID: mdl-34622629

RESUMO

To develop Senecavirus A (SVA) virus-like particles (VLPs), a recombinant prokaryotic expression plasmid pET28a-SVA-VP031 was constructed to co-express SVA structural proteins VP0, VP3 and VP1, according to the genomic sequence of the field isolate CH-FJ-2017 after the recombinant proteins were expressed in E .coli system, and purified by Ni+ ion chromatographic method. The SVA VLPs self-assemble with a high yield in vitro buffer. A typical VLPs with an average diameter of 25-30 nm which is similar to native virions by using TEM detection. Animals immunized by SVA VLPs shown that the VLPs induced high titers neutralizing antibodies in Guinea pigs. This study indicated that the VLPs produced with co-expressing SVA structural proteins VP0, VP3 and VP1 in prokaryotic system is a promising candidate and laid an important foundation for the development of a novel SVA VLPs vaccine.


Assuntos
Picornaviridae , Animais , Anticorpos Neutralizantes , Escherichia coli/genética , Genômica , Cobaias , Picornaviridae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA