RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Rosa odorata Sweet var. gigantea (Coll. et Hemsl.) Rehd. et Wils is a commonly utilized traditional medicine among the Yi nationality, also known as "Gugongguo", for the treatment of gastrointestinal disorders. Previous studies have indicated that the extract of Rosa odorata sweet var. gigantea (FOE) fruit has demonstrated a protective effect on the stomach; however, its impact on chronic atrophic gastritis (CAG) with severe disease remains unknown. AIM OF THE STUDY: This study aimed to investigate the impact of FOE on CAG and its underlying mechanisms both in vitro and in vivo. MATERIALS AND METHODS: By employing Ultra Performance Liquid Chromatography/Quadrupole-Time of Flight Mass Spectrometry (UPLC-QTOF-MS/MS) and network pharmacology, the primary active compounds and action targets of FOE were identified. In vitro, the impact of FOE on CAG was investigated through scratch, migration, and invasion assays. Subsequently, guided by network pharmacology, EMT and TGF-ß signaling pathway-related proteins were assessed using Western blot and immunofluorescence experiments. Additionally, an in vivo CAG rat model was established to validate the effects of FOE and confirm its mechanism of action through hematoxylin-eosin (H&E), immunohistochemistry, Western blot, as well as untargeted metabolomics analysis of rat serum. It was observed that FOE inhibited scratch healing abilities, migration, invasion capabilities, as well as the expression of EMT-related proteins (E-cadherin, N-cadherin, Snail, Vimentin) in CAG model cells (MC cells), providing initial evidence for its efficacy. RESULTS: Through the analysis of UPLC-QTOF-MS/MS, a total of 51 major compounds were identified in the FOE. Subsequent network pharmacological analysis suggested that FOE may regulate Epithelial mesenchymal transition (EMT) through the transforming growth factor ß (TGF-ß) pathway. Furthermore, experimental verification demonstrated that FOE inhibited the protein expression of TGF-ß1 and its downstream protein Smad2/3 in vitro. In vivo findings also indicated similar mechanisms in MC cells, suggesting a reversal of the CAG process and significant inhibition of EMT and TGF-ß signaling pathways. Additionally, untargeted metabolomics of rat serum confirmed the therapeutic effect of FOE on CAG and predicted its potential involvement in the arachidonic acid metabolic pathway. CONCLUSION: This study initially demonstrated that FOE effectively reverses the process of EMT through the TGF-ß1/Smad2/3 signaling pathway, thereby providing a therapeutic benefit for CAG.
RESUMO
BACKGROUND: The blunt snout bream (Megalobrama amblycephala) is an important economic freshwater fish in China with tender flesh and high nutritional value. With the cultivation of superior new varieties and the expansion of breeding scale, it becomes imperative to employ sex-control technology to cultivate monosexual populations of M. amblycephala, thereby preventing the deterioration of desirable traits. The development of specific markers capable of accurately identifying the sex of M. amblycephala would facilitate the determination of the genetic sex of the breeding population before gonad maturation, thereby expediting the processes of sex-controlled breeding of M. amblycephala. RESULTS: A whole-genome re-sequencing was performed for 116 females and 141 males M. amblycephala collected from nine populations. Seven candidate male-specific sequences were identified through comparative analysis of male and female genomes, which were further compared with the sequencing data of 257 individuals, and finally three male-specific sequences were generated. These three sequences were further validated by PCR amplification in 32 males and 32 females to confirm their potential as male-specific molecular markers for M. amblycephala. One of these markers showed potential applicability in M. pellegrini as well, enabling males to be identified using this specific molecular marker. CONCLUSIONS: The study provides a high-efficiency and cost-effective approach for the genetic sex identification in two species of Megalobrama. The developed markers in this study have great potential in facilitating sex-controlled breeding of M. amblycephala and M. pellegrini, while also contributing valuable insights into the underlying mechanisms of fish sex determination.
Assuntos
Cyprinidae , Animais , Feminino , Masculino , Cyprinidae/genética , Marcadores Genéticos , Sequenciamento Completo do Genoma/métodos , GenomaRESUMO
Objective: Rosa odorata var. gigantea is a popular medicinal plant. Some studies have demonstrated that ethanolic extract of the fruits of R. odorata var. gigantea (FOE) has gastroprotective properties. The aim of this study was to investigate the gastroprotective activity of FOE on water immersion restrained stress (WIRS)-induced gastric mucosal injury in a rat model and elucidate the possible molecular mechanisms involved. Methods: A rat stress ulcer model was established in this study using WIRS. After rats were treated with FOE orally for 7 d, the effect of FOE treatment was analyzed by hematoxylin and eosin (H&E) staining, and the changes of inflammatory factors, oxidative stress factors, and gastric-specific regulatory factors and pepsin in the blood and gastric tissues of rats were examined by ELISA assay. Molecular mechanism of FOE was investigated by immunohistochemical assay and Western blot. Results: Compared with the WIRS group, FOE could diminish both the macroscopic and microscopic pathological morphology of gastric mucosa. FOE significantly preserved the antioxidants glutathione peroxidase (GSH-PX), superoxide dismutase (SOD) and catalase (CAT) contents; anti-inflammatory cytokines interleukin-10 (IL-10) and prostaglandin E2 (PGE2) levels as well as regulatory factors tumor necrosis factor-α (TGF-α) and somatostatin (SS) contents, while decreasing malondialdehyde (MDA), nitric oxide synthase (iNOS), tumor necrosis factor (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), gastrin (GAS) and endothelin (ET) levels. Moreover, FOE distinctly upregulated the expression of Nrf2, HO-1, Bcl2 and proliferating cell nuclear antigen (PCNA). In addition, FOE activated the expression of p-EGFR and downregulated the expression of NF-κB, Bax, Cleaved-caspase-3, Cyto-C and Cleaved-PARP1, thus promoting gastric mucosal cell survival. Conclusion: The current work demonstrated that FOE exerted a gastroprotective activity against gastric mucosal injury induced by WIRS. The underlying mechanism might be associated with the improvement of anti-inflammatory, anti-oxidation and anti-apoptosis systems.
RESUMO
In this study, the functional properties of a mixture consisting of Tremella aurantialba powder (TAP) and wheat flour were investigated. Further, the effects of adding 0%, 1%, 3%, 5%, and 10% TAP on the physical properties of bread, as well as its glucose release, microstructure, and rheology during in vitro simulated digestion were studied. The water-holding, oil-holding, and swelling capacities of wheat flour were significantly enhanced (p < 0.05) with the increase of TAP. The addition of TAP increased the hardness, chewiness, gumminess, and moisture content and darkened the color of the bread. Sensory evaluation showed that adding the 3% of TAP could produce bread that satisfies the requirements of consumers. Furthermore, adding TAP could inhibit the release of glucose from the digesta into the dialysis solution, especially the addition of 10% TAP reduced the release of bread glucose by 23.81%. This phenomenon might be related to the increased viscosity of the digesta and the smooth physical barrier on the surface of starch granules during simulated in vitro digestion of bread. Therefore, as a natural food, T. aurantialba has great potential in improving the functional properties of bread and the application of starch matrix products.
Assuntos
Pão , Glucose , Farinha , Triticum/química , Reologia , Amido/químicaRESUMO
Qingjin Yiqi granules (QJYQ granules) are hospital preparations derived from ancient prescriptions under the guidance of academician Zhang Boli; they have the effect of invigorating qi and nourishing yin, strengthening the spleen and harmonizing the middle, clearing heat, and drying dampness, and are mainly used for patients with coronavirus disease 2019 (COVID-19) during the recovery period. However, their chemical constituents and pharmacokinetic characteristics in vivo have not been systematically investigated. In this study, 110 chemical constituents of QJYQ granules were identified using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS), and a fast and sensitive ultra-high-performance liquid chromatography-mass spectrometry method was developed and validated for the target analytes. A rat model of lung-qi deficiency was established by subjecting mice to passive smoking combined with cold baths, and 23 main bioactive components of QJYQ granules were analyzed in normal and model rats after oral administration. The results showed that, compared to the normal group, there were significant differences in the pharmacokinetics of baicalin, schisandrin, ginsenoside Rb1, naringin, hesperidin, liquiritin, liquiritigenin, glycyrrhizic acid, and hastatoside in the model rats (P < 0.05), indicating that the in vivo processes of the above components changed under pathological conditions, suggesting that they may have pharmacological effects as active components. This study has helped identify QJYQ particulate substances and further supports their clinical application..
Assuntos
COVID-19 , Medicamentos de Ervas Chinesas , Animais , Ratos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Medicamentos de Ervas Chinesas/química , Pulmão/química , Qi , Espectrometria de Massas em Tandem/métodosRESUMO
Coilia nasus is a threatened migratory species in the Yangtze River Basin. To reveal the genetic diversity of natural and farmed populations of C. nasus and the status of germplasm resources in the Yangtze River, the genetic diversity and structure of two wild populations (Yezhi Lake: YZ; Poyang Lake: PY) and two farmed populations (Zhenjiang: ZJ; Wuhan: WH) of C. nasus were analyzed using 44,718 SNPs obtained via 2b-RAD sequencing. The results indicate that both the wild and farmed populations had low genetic diversity, and germplasm resources have undergone varying degrees of degradation. Population genetic structure analyses indicated that the four populations may have come from two ancestral groups. Different amounts of gene flow were identified among WH, ZJ, and PY populations, but gene flow among YZ and other populations was low. It is speculated that the river-lake isolation of Yezhi Lake is the main cause of this phenomenon. In conclusion, this study revealed that genetic diversity reduction and germplasm resource degradation had occurred in both wild and farmed C. nasus, suggesting that conservation of its resources is of great urgency. This study provides a theoretical basis for the conservation and rational exploitation of germplasm resources for C. nasus.
RESUMO
Purpose: Information about dynamic changes occurring in the parameters and morphology of erythrocytes and platelets during the coronavirus disease 2019 (COVID-19) infection and convalescence is scarce. To explore potential associations between dynamic erythrocyte and platelet parameters, morphological changes, and the course or severity of the disease is essential. Patients and Methods: From January 17th, 2020, to February 20th, 2022, we followed up on 35 patients with non-severe and 11 patients with severe COVID-19 following their discharge. We collected clinical features, dynamic complete blood count (CBC), and peripheral blood smears (PBS) and analyzed parameter and morphological changes of erythrocytes and platelets depending on the course or severity of the disease. The course of the disease included four periods, namely onset (T1), discharge (T2), 1-year follow-up (T3), and 2-year follow-up (T4). Results: Red blood cell (RBC) counts and hemoglobin were the lowest in T2, followed by T1, and lower in T1 and T2 than in T3 and T4. Inversely, the red blood cell distribution width (RDW) was the highest in T2, followed by T1, and higher than in T3 and T4. Compared to non-severe patients, the platelet of severe patients was lower in T1 and T2. In contrast, the mean platelet volume (MPV) and platelet distribution width (PDW) tended to be higher in severe patients. Similarly, anisocytosis was more common in peripheral blood smears at early stages and in severe patients. Finally, large platelets were more common in severe patients. Conclusion: Anisocytosis of erythrocytes and large platelets are found in patients with severe COVID-19, these changes may help primary hospitals to identify patients with a high risk of severe COVID-19 at an early stage.
RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: As one of China's 100 classic recipes, Taohong Siwu Decoction (THSWD) consists of Siwu Tang flavored peach kernel and safflower, and is used to nourish and activate blood. Accordingly, THSWD is mainly administered to treat blood deficiency and stasis syndrome. According to prior studies, THSWD induces antioxidant stress, inhibits inflammatory reactions, inhibits platelet aggregation, prevents fibrosis, reduces blood lipids, prolongs clotting time, prevents atherosclerosis and vascular pathology, improves hemorheological changes, and regulates related signaling pathways. MATERIALS AND METHODS: A sensitive analytical method was developed to detect the marker components of THSWD using UPLC-Q-TOF-MS. A rapid and sensitive UPLC-MS/MS analytical method was developed and applied to detect 16 major bioactive components in normal and acute blood stasis (ABS) rats following oral administration of THSWD. The metabolic process of THSWD in vivo was evaluated and the differences in pharmacokinetic parameters between the normal and ABS rat metabolic processes were compared. RESULTS: This method was fully validated based on its excellent linearity (r2 < 0.99), satisfactory intra- and inter-day precisions (RSD <15%), and good accuracy (RE within ±14.83%). The stability, matrix effects, and extraction recoveries of the rat plasma samples were also within the acceptable limits (RSD <15%). Compared to normal rats, the pharmacokinetics of the major active constituents (except Senkyunolide G) were significantly different (P < 0.05) in the ABS model rats, indicating that the metabolism of the 16 compounds in vivo may change under disease conditions. CONCLUSIONS: In this study, a sensitive UPLC-Q-TOF-MS method was established to analyze the main components of THSWD, and a UPLC-MS/MS analytical method was developed and applied for the pharmacokinetic parameter detection of the 16 main bioactive components in normal and ABS rats. Our findings lay the foundation for further studies on the pharmacokinetic-pharmacodynamic correlation for THSWD.
Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas em Tandem , Ratos , Animais , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodosRESUMO
This study aimed to screen, design, and evaluate an optimal nanoemulsion formulation for Aucklandiae Radix extraction (ARE). A simple lattice design (SLD) method was used to determine the preparation process of Aucklandiae Radix extract-nanoemulsions (ARE-NEs). After optimization, the average particle size of ARE-NEs was 14.1 ± 1.1 nm, polydispersity index was 0.2376, and pH was 6.92. In vitro penetration tests verified that the permeability ratios of costunolide (CE), dehydrocostus lactone (DE), and ARE-NEs were approximately 6.33 times and 8.20 times higher, respectively, than those of the control group. The results of the pharmacokinetic study indicated that after topical administration, the content of the index components of ARE-NEs increased in vivo, with a longer release time and higher bioavailability in vivo than in vitro. The index components were CE and DE, respectively. In addition, a skin irritation test was conducted on normal and skin-damaged rabbits, aided by HE staining and scanning electron microscopy, to reveal the transdermal mechanism of ARE-NEs and proved that NEs are safe for topical application. ARE-NEs energetically developed the properties of skin and penetration through the transdermal route, which were secure when applied via the transdermal delivery system .
Assuntos
Pele , Animais , Coelhos , Administração Cutânea , Emulsões/químicaRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Acute lung injury (ALI) is a common manifestation of COVID-19. Xuanfei Baidu Formula(XFBD) is used in China to treat mild or common damp-toxin obstructive pulmonary syndrome in COVID-19 patients. However, the active ingredients of XFBD have not been extensively studied, and its mechanism of action in the treatment of ALI is not well understood. AIM OF THE STUDY: The purpose of this study was to investigate the mechanism of action of XFBD in treating ALI in rats, by evaluating its active components. MATERIALS AND METHODS: Firstly, the chemical composition of XFBD was identified using ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry. The potential targets of XFBD for ALI treatment were predicted using network pharmacological analysis. Finally, the molecular mechanism of XFBD was validated using a RAW264.7 cell inflammation model and a mouse ALI model. RESULTS: A total of 113 compounds were identified in XFBD. Network pharmacology revealed 34 hub targets between the 113 compounds and ALI. The results of Kyoto Encyclopedia of Genes and Genomes and gene ontology analyses indicated that the NF-κB signaling pathway was the main pathway for XFBD in the treatment of ALI. We found that XFBD reduced proinflammatory factor levels in LPS-induced cellular models. By examining the lung wet/dry weight ratio and pathological sections in vivo, XFBD was found that XFBD could alleviate ALI. Immunohistochemistry results showed that XFBD inhibited ALI-induced increases in p-IKK, p-NF-κB p65, and iNOS proteins. In vitro experiments demonstrated that XFBD inhibited LPS-induced activation of the NF-κB pathway. CONCLUSION: This study identified the potential practical components of XFBD, combined with network pharmacology and experimental validation to demonstrate that XFBD can alleviate lung injury caused by ALI by inhibiting the NF-κB signaling pathway.
Assuntos
Lesão Pulmonar Aguda , COVID-19 , Camundongos , Ratos , Animais , NF-kappa B/metabolismo , Lipopolissacarídeos/toxicidade , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Transdução de Sinais , Pulmão/patologia , Modelos Animais de DoençasRESUMO
BACKGROUND: Gastric mucosal injury caused by ethanol is a common gastrointestinal disease. Quinoa (Chenopodium quinoa Willd.), as a nutrient-rich grain, plays a significant role in preventing and treating gastric mucosal damage. The present study aimed to explore the protective effect of quinoa on alcohol-induced gastric mucosal damage and its possible mechanism. RESULTS: The ethanol-induced gastric mucosal injury rat model was used for in vivo experiments and H2 O2 -induced GES-1 cells for in vitro experiments to elucidate the protective effect of quinoa. The results show that quinoa water extract can increase the superoxide dismutase level and decrease the malondialdehyde level in vitro and in vivo. Furthermore, quinoa also reduced the bleeding point and bleeding area in rats with ethanol-induced gastric mucosal injury and improved gastric histopathological changes. H2 O2 significantly increased the levels of inflammatory factors in GES-1 cells, which were markedly ameliorated by quinoa water extract. Likewise, quinoa water extract regulated the protein expression levels of Nrf2, Keap1, HO-1, p-IKK, and p-NF-κB through Nrf2 and nuclear factor-κB signaling pathways, reducing the production of oxidative stress and inflammation, thereby repairing the damaged gastric mucosa. CONCLUSION: The findings of this study demonstrated that quinoa shows protective effect against ethanol-induced gastric mucosal injury through its anti-inflammatory and anti-oxidant effects. We propose that our research will provide a reference for quinoa as a functional food. © 2022 Society of Chemical Industry.
Assuntos
Chenopodium quinoa , Úlcera Gástrica , Ratos , Animais , Chenopodium quinoa/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Mucosa Gástrica/metabolismo , Etanol/metabolismo , Estresse Oxidativo , NF-kappa B/metabolismo , Água/metabolismo , Úlcera Gástrica/induzido quimicamenteRESUMO
Sexual size dimorphism is widespread in fish species. Although sex growth differences in multiple species have been studied successively, the commonalities of regulatory mechanisms across sexually dimorphic species are unknown. In this study, we performed RNA-seq analysis of four representative fish (loach, half-smooth tongue sole, yellow catfish, and Nile tilapia) with significant growth differences between females and males. Clean reads were identified from four fish species, ranging from 45,718,052 to 57,733,120. Following comparison transcriptome analysis, there were 1,132 and 1,108, 1,290 and 1,102, 4,732 and 4,266, 748 and 192 differentially expressed genes (DEGs) in the brain and muscle of loach, half-smooth tongue sole, yellow catfish, and Nile tilapia, respectively. Furthermore, the expression levels were validated by quantitative real-time PCR (qRT-PCR). Comparative transcriptome profiles of four fish described here will provide fundamental information for further studies on the commonalities of sexually size dimorphic fish in regulating growth differences between females and males.
Assuntos
Peixes , Transcriptoma , Animais , Feminino , Masculino , Perfilação da Expressão Gênica , Caracteres SexuaisRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Xuanfei Baidu prescription, consisting of 13 Chinese medicines, was formulated by academicians Boli Zhang and Professor Qingquan Liu based on their experience in first-line clinical treatment of COVID-19. Xuanfei Baidu granules (XFBD granules) are a proprietary Chinese medicine preparation developed based on Xuanfei Baidu prescription. It is recommended for the treatment of patients with the common wet toxin and lung stagnation syndrome of COVID-19. However, the pharmacokinetic characteristics of its major bioactive components in rats under different physiological and pathological conditions are unclear. MATERIALS AND METHODS: A rapid and sensitive analytical method, ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS/MS), was developed and applied to 24 major bioactive components in normal and ARDS rats after oral administration of XFBD granules. We studied the metabolic process of XFBD granules in vivo to compare the differences in pharmacokinetic parameters between normal and model metabolic processes. RESULTS: This method was successfully applied to the pharmacokinetic investigation of 24 major components of XFBD granules following oral administration in normal and ARDS rats. Eight components, including ephedrine and amygdalin, were more highly absorbed and had shorter Tmax values than the model group; the absorption of six components, such as rhein, decreased in ARDS rats, and there was no significant difference in the absorption of ten components, such as verbenalin and naringin, between the normal and ARDS rats. The results showed that the peak times of other analytes were very short, and 80% of these target constituents were eliminated in both normal and ARDS rats within 6 h except for liquiritigenin and 18ß-glycyrrhetinic acid. CONCLUSIONS: In this study, a rapid and sensitive UPLC-MS/MS analytical method was developed and applied to 24 major bioactive components in normal and ARDS rats after the oral administration of XFBD granules. This will serve to form the basis for further studies on the pharmacokinetic-pharmacodynamic correlation of XFBD granules.
Assuntos
COVID-19 , Medicamentos de Ervas Chinesas , Síndrome do Desconforto Respiratório , Administração Oral , Animais , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem/métodosRESUMO
BACKGROUND: Breast cancer is a frequently occurring malignant tumor in women. Angiotensin-converting enzyme 2 (ACE2) is widely expressed in most organs; however, the association of ACE2 with prognosis and immune infiltration in breast invasive carcinoma (BRCA) remains elusive. METHODS: We explored the expression level and prognostic value of ACE2 in patients with BRCA using a series of online bioinformatics analysis databases encompassing Oncomine, UALCAN, Kaplan-Meier plotter, TIMER, LinkedOmics, and GEO. qRT-PCR was performed to verify our findings. RESULTS: Angiotensin-converting enzyme 2 mRNA and protein expression levels were decreased in BRCA tissues, and patients with low ACE2 expression levels had a poor prognosis. DNA promoter methylation of ACE2 significantly downregulated ACE2 expression in BRCA, while the expression of this protein was positively linked to immune infiltration of B cells, CD8+ and CD4+ T cells, neutrophils, and dendritic cells in BRCA tissues. The high expression level of ACE2 in enriched basophils, CD8+ T cells, and type-2 helper T cells, which showed decreasing levels, indicated a better prognosis for BRCA. Enrichment analyses revealed that NF-κB, IL-17, and TNF signaling pathways were highly correlated to ACE2 in BRCA. Verification study revealed that downregulation of ACE2 was associated with a better prognosis in BRCA. Univariate and multivariate analysis confirmed ACE2 expression and clinical stage as independent prognostic factors for breast cancer. CONCLUSIONS: Angiotensin-converting enzyme 2 may be a potential prognostic biomarker and target for BRCA. Nevertheless, future investigations are needed for validating our findings and promoting the clinical application of ACE2 in BRCA.
Assuntos
Enzima de Conversão de Angiotensina 2 , Neoplasias da Mama , Carcinoma , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Carcinoma/genética , Carcinoma/metabolismo , Feminino , Humanos , PrognósticoRESUMO
BACKGROUND: Mutants are important for the discovery of functional genes and creation of germplasm resources. Mutant acquisition depends on the efficiency of mutation technology and screening methods. CRISPR-Cas9 technology is an efficient gene editing technology mainly used for editing a few genes or target sites, which has not been applied for the construction of random mutant libraries and for the de novo discovery of functional genes. RESULTS: In this study, we first sequenced and assembled the chromosome-level genome of wild-type rare minnow (Gobiocypris rarus) as a susceptible model of hemorrhagic disease, obtained a 956.05 Mb genome sequence, assembled the sequence into 25 chromosomes, and annotated 26,861 protein-coding genes. Thereafter, CRISPR-Cas9 technology was applied to randomly mutate the whole genome of rare minnow with the conserved bases (TATAWAW and ATG) of the promoter and coding regions as the target sites. The survival rate of hemorrhagic disease in the rare minnow gradually increased from 0% (the entire wild-type population died after infection) to 38.24% (F3 generation). Finally, 7 susceptible genes were identified via genome comparative analysis and cell-level verification based on the rare minnow genome. CONCLUSIONS: The results provided the genomic resources for wild-type rare minnow, and confirmed that the random mutation system designed using CRISPR-Cas9 technology in this study is simple and efficient and is suitable for the de novo discovery of functional genes and creation of a germplasm resource related to qualitative traits.
Assuntos
Sistemas CRISPR-Cas , Cyprinidae , Animais , Cromossomos , Cyprinidae/genética , Edição de Genes/métodos , MutaçãoRESUMO
Circular RNAs (circRNAs), a novel class of endogenous RNAs, have been recognized to play important roles in the growth of animals. However, the regulatory mechanism of circRNAs on fish muscle growth is still unclear. In this study, we performed whole transcriptome analysis of skeletal muscles from two populations with different growth rates (fast-growing and slow-growing) of blunt snout bream (Megalobrama amblycephala), an important fish species for aquaculture. The selected circRNAs were validated by qPCR and Sanger sequencing. Pairs of circRNA-miRNA-mRNA networks were constructed with the predicted differentially expressed (DE) pairs, which revealed regulatory roles in muscle myogenesis and hypertrophy. As a result, a total of 445 circRNAs were identified, including 42 DE circRNAs between fast-growing (FG) and slow-growing (SG) groups. Many of these DE circRNAs were related with aminoglycan biosynthetic and metabolic processes, cytokinetic processes, and the adherens junction pathway. The functional prediction results showed that novel_circ_0001608 and novel_circ_0002886, competing to bind with dre-miR-153b-5p and dre-miR-124-6-5p, might act as competing endogenous RNAs (ceRNAs) to control MamblycephalaGene14755 (pik3r1) and MamblycephalaGene10444 (apip) level, respectively, thus playing an important regulatory role in muscle growth. Overall, these results will not only help us to further understand the novel RNA transcripts in M. amblycephala, but also provide new clues to investigate the potential mechanism of circRNAs regulating fish growth and muscle development.
Assuntos
Cyprinidae/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Músculos/metabolismo , RNA Circular , Animais , Apoptose , Regulação da Expressão Gênica , Biblioteca Gênica , Genoma , Desenvolvimento Muscular , RNA Circular/metabolismo , RNA-Seq , Transdução de Sinais , TranscriptomaRESUMO
Sexual and polyploidy size dimorphisms are widespread phenomena in fish, but the molecular mechanisms remain unclear. Loach (Misgurnus anguillicaudatus) displays both sexual and polyploid growth dimorphism phenomena, and are therefore ideal models to study these two phenomena. In this study, RNA-seq was used for the first time to explore the differentially expressed genes (DEGs) between both sexes of diploid and tetraploid loaches in four tissues (brain, gonad, liver, and muscle). Results showed that 21,003, 17, and 1 DEGs were identified in gonad, liver, and muscle tissues, respectively, between females and males in both diploids and tetraploids. Regarding the ploidy levels, 4956, 1496, 2187, and 1726 DEGs were identified in the brain, gonad, liver, and muscle tissues, respectively, between tetraploids and diploids of the same sex. When both sexual and polyploid size dimorphisms were considered simultaneously in the four tissues, only 424 DEGs were found in the gonads, indicating that these gonadal DEGs may play an important regulatory role in regulating sexual and polyploid size dimorphisms. Regardless of the sex or ploidy comparison, the significant DEGs involved in glycolysis/gluconeogenesis and oxidative phosphorylation pathways were upregulated in faster-growing individuals, while steroid hormone biosynthesis-related genes and fatty acid degradation and elongation-related genes were downregulated. This suggests that fast-growing loaches (tetraploids, females) have higher energy metabolism levels and lower steroid hormone synthesis and fatty acid degradation abilities than slow-growing loaches (diploids, males). Our findings provide an archive for future systematic research on fish sexual and polyploid dimorphisms.
RESUMO
Astragaloside IV (ASIV) is the main active component of Astragalus, and can ameliorate cardiomyocyte hypertrophy, apoptosis and fibrosis. In this experiment, we studied how ASIV reduces the cardiotoxicity caused by adriamycin and protects the heart. To this end, rats were randomly divided into the control, ADR, ADR + ASIV and ASIV groups (n = 6). Echocardiography was used to observe cardiac function, HE staining was used to observe myocardial injury, TUNEL staining was used to observe myocardial cell apoptosis, and immunofluorescence and Western blotting was used to observe relevant proteins expression. Experiments have shown that adriamycin can damage heart function in rats, and increase the cell apoptosis index, autophagy level and oxidative stress level. Further results showed that ADR can inhibit the PI3K/Akt pathway. ASIV treatment can significantly improve the cardiac function of rats treated with ADR and regulate autophagy, oxidative stress and apoptosis. Our findings indicate that ASIV may reduce the heart damage caused by adriamycin by activating the PI3K/Akt pathway.
RESUMO
Astragaloside IV (AsIV), an active ingredient isolated from traditional Chinese medicine astragalus membranaceus, is beneficial to cardiovascular health. This study aimed to characterize the functional role of AsIV against adriamycin (ADR)-induced cardiomyopathy. Here, healthy rats were treated with ADR and/or AsIV for 35 days. We found that AsIV protected the rats against ADR-induced cardiomyopathy characterized by myocardial fibrosis and cardiac dysfunction. Meanwhile, ADR increased type I and III collagens, TGF-ß, NOX2, and NOX4 expression and SMAD2/3 activity in the left ventricles of rats, while those effects were countered by AsIV through suppressing oxidative stress. Moreover, ADR was found to promote cardiac ferroptosis, whereas administration of AsIV attenuated the process via activating Nrf2 signaling pathway and the subsequent GPx4 expression increasing. These results suggest that AsIV might play a protective role against ADR-induced myocardial fibrosis, which may partly attribute to its anti-ferroptotic action by enhancing Nrf2 signaling.
Assuntos
Doxorrubicina/farmacologia , Ferroptose/efeitos dos fármacos , Miocárdio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Saponinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Triterpenos/farmacologia , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Proteínas Musculares/biossíntese , Miocárdio/patologia , Ratos , Ratos Sprague-DawleyRESUMO
Objectives In December 2019, there was an outbreak of coronavirus disease 2019 (COVID-19) in Wuhan, China, and since then, the disease has been increasingly spread throughout the world. Unfortunately, the information about early prediction factors for disease progression is relatively limited. Therefore, there is an urgent need to investigate the risk factors of developing severe disease. The objective of the study was to reveal the risk factors of developing severe disease by comparing the differences in the hemocyte count and dynamic profiles in patients with severe and non-severe COVID-19. Methods In this retrospectively analyzed cohort, 141 confirmed COVID-19 patients were enrolled in Taizhou Public Health Medical Center, Taizhou Hospital, Zhejiang Province, China, from January 17, 2020 to February 26, 2020. Clinical characteristics and hemocyte counts of severe and non-severe COVID patients were collected. The differences in the hemocyte counts and dynamic profiles in patients with severe and non-severe COVID-19 were compared. Multivariate Cox regression analysis was performed to identify potential biomarkers for predicting disease progression. A concordance index (C-index), calibration curve, decision curve and the clinical impact curve were calculated to assess the predictive accuracy. Results The data showed that the white blood cell count, neutrophil count and platelet count were normal on the day of hospital admission in most COVID-19 patients (87.9%, 85.1% and 88.7%, respectively). A total of 82.8% of severe patients had lymphopenia after the onset of symptoms, and as the disease progressed, there was marked lymphopenia. Multivariate Cox analysis showed that the neutrophil count (hazard ratio [HR] = 4.441, 95% CI = 1.954-10.090, p = 0.000), lymphocyte count (HR = 0.255, 95% CI = 0.097-0.669, p = 0.006) and platelet count (HR = 0.244, 95% CI = 0.111-0.537, p = 0.000) were independent risk factors for disease progression. The C-index (0.821 [95% CI, 0.746-0.896]), calibration curve, decision curve and the clinical impact curve showed that the nomogram can be used to predict the disease progression in COVID-19 patients accurately. In addition, the data involving the neutrophil count, lymphocyte count and platelet count (NLP score) have something to do with improving risk stratification and management of COVID-19 patients. Conclusions We designed a clinically predictive tool which is easy to use for assessing the progression risk of COVID-19, and the NLP score could be used to facilitate patient stratification management.