Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35457218

RESUMO

Single-stranded DNA (ssDNA)-binding proteins (SSBs) play a central role in cells by participating in DNA metabolism, including replication, repair, recombination, and replication fork restart. SSBs are essential for cell survival and thus an attractive target for potential anti-pathogen chemotherapy. In this study, we determined the crystal structure and examined the size of the ssDNA-binding site of an SSB from Salmonella enterica serovar Typhimurium LT2 (SeSSB), a ubiquitous opportunistic pathogen which is highly resistant to antibiotics. The crystal structure was solved at a resolution of 2.8 Å (PDB ID 7F25), indicating that the SeSSB monomer possesses an oligonucleotide/oligosaccharide-binding (OB) fold domain at its N-terminus and a flexible tail at its C-terminus. The core of the OB-fold in the SeSSB is made of a six-stranded ß-barrel capped by an α-helix. The crystal structure of the SeSSB contained two monomers per asymmetric unit, which may indicate the formation of a dimer. However, the gel-filtration chromatography analysis showed that the SeSSB forms a tetramer in solution. Through an electrophoretic mobility shift analysis, we characterized the stoichiometry of the SeSSB complexed with a series of ssDNA dA homopolymers, and the size of the ssDNA-binding site was determined to be around 22 nt. We also found the flavanonol taxifolin, also known as dihydroquercetin, capable of inhibiting the ssDNA-binding activity of the SeSSB. Thus, this result extended the SSB interactome to include taxifolin, a natural product with a wide range of promising pharmacological activities.


Assuntos
Salmonella enterica , DNA de Cadeia Simples , Proteínas de Ligação a DNA/metabolismo , Ligação Proteica , Quercetina/análogos & derivados , Quercetina/farmacologia , Salmonella enterica/genética , Salmonella typhimurium/genética
2.
Bioinorg Chem Appl ; 2022: 1817745, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35198016

RESUMO

Dihydropyrimidinase (DHPase) is a key enzyme for pyrimidine degradation. DHPase contains a binuclear metal center in which two Zn ions are bridged by a posttranslationally carbamylated lysine. DHPase catalyzes the hydrolysis of dihydrouracil to N-carbamoyl-ß-alanine. Whether 5-aminouracil (5-AU), a thymine antagonist and an anticancer drug that can block DNA synthesis and induce replication stress, can interact with DHPase remains to be investigated. In this study, we determined the crystal structure of Pseudomonas aeruginosa DHPase (PaDHPase) complexed with 5-AU at 2.1 Å resolution (PDB entry 7E3U). This complexed structure revealed that 5-AU interacts with Znα (3.2 Å), Znß (3.0 Å), the main chains of residues Ser289 (2.8 Å) and Asn337 (3.3 Å), and the side chain of residue Tyr155 (2.8 Å). These residues are also known as the substrate-binding sites of DHPase. Dynamic loop I (amino acid residues Pro65-Val70) in PaDHPase is not involved in the binding of 5-AU. The fluorescence quenching analysis and site-directed mutagenesis were used to confirm the binding mode revealed by the complexed crystal structure. The 5-AU binding mode of PaDHPase is, however, different from that of 5-fluorouracil, the best-known fluoropyrimidine used for anticancer therapy. These results provide molecular insights that may facilitate the development of new inhibitors targeting DHPase and constitute the 5-AU interactome.

3.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35054774

RESUMO

Single-stranded DNA (ssDNA)-binding protein (SSB) plays a crucial role in DNA replication, repair, and recombination as well as replication fork restarts. SSB is essential for cell survival and, thus, is an attractive target for potential antipathogen chemotherapy. Whether naturally occurring products can inhibit SSB remains unknown. In this study, the effect of the flavonols myricetin, quercetin, kaempferol, and galangin on the inhibition of Pseudomonas aeruginosa SSB (PaSSB) was investigated. Furthermore, SSB was identified as a novel quercetin-binding protein. Through an electrophoretic mobility shift analysis, myricetin could inhibit the ssDNA binding activity of PaSSB with an IC50 of 2.8 ± 0.4 µM. The effect of quercetin, kaempferol, and galangin was insignificant. To elucidate the flavonol inhibition specificity, the crystal structure of PaSSB complexed with the non-inhibitor quercetin was solved using the molecular replacement method at a resolution of 2.3 Å (PDB entry 7VUM) and compared with a structure with the inhibitor myricetin (PDB entry 5YUN). Although myricetin and quercetin bound PaSSB at a similar site, their binding poses were different. Compared with myricetin, the aromatic ring of quercetin shifted by a distance of 4.9 Å and an angle of 31o for hydrogen bonding to the side chain of Asn108 in PaSSB. In addition, myricetin occupied and interacted with the ssDNA binding sites Lys7 and Glu80 in PaSSB whereas quercetin did not. This result might explain why myricetin could, but quercetin could not, strongly inhibit PaSSB. This molecular evidence reveals the flavonol inhibition specificity and also extends the interactomes of the natural anticancer products myricetin and quercetin to include the OB-fold protein SSB.


Assuntos
Proteínas de Ligação a DNA/antagonistas & inibidores , Flavonóis/farmacologia , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Cristalografia por Raios X , Proteínas de Ligação a DNA/química , Flavonoides/farmacologia , Flavonóis/química , Quempferóis/farmacologia , Modelos Moleculares , Conformação Proteica , Quercetina/química , Quercetina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA